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There are many high-quality health economic evaluation books and manuscripts. 
The objective of this book was not to be yet another health economic evaluation 
text. This book fills a void missing within alternative resources. The primary objec-
tive of its publication is to support eager learners and model building practitioners 
seeking a pragmatic and concise roadmap for how to choose wisely related to the 
many important decisions within health economic evaluation modelling. 
This book begins with a practical review of decision analytic modelling techniques 
supporting economic evaluations in health care. After bringing learners and future 
and current model builders to an equal playing field, this book’s essence relates to 
how it supports the reader in choosing a model type that fits the research ques-
tion; in walking the reader through pragmatic step-by-step instructions for model 
building; in concisely addressing the advanced topic of uncertainty; and in provid-
ing checklists related to model validation and quality assurance.  

Modelling, done well, is a rigorous, systematic, scientific exercise that transpar-
ently addresses research questions while simultaneously generating additional 
hypotheses. 
The editors and authors combined scientific knowledge with many years of 
modelling experience to share the book’s essence with readers who are interest-
ed in learning and working in this growing field. 
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1 Introduction

Balázs Nagy

Imagine you are the head of your family and need to make the most out of your budget 
to keep your loved ones healthy. Now imagine yourself as the manager of a hospital who 
has to plan the medications and interventions the hospital should buy for next year. Let’s 
say you are the chief of the national health insurance fund in your country and you need 
to make decisions about the interventions to reimburse and the healthcare provisions to 
promote. Finally, imagine you are the Minister of Finance in a country who decides whet-
her the society will spend the tax revenues on building highways or on emergency care 
units. In all these scenarios, you have to take into account at least two things: how much 
money you can afford to spend (i.e. affordability) and what the return will be for any out-
lay of money invested (i.e. efficiency). Economic evaluations in healthcare are intended to 
answer these two questions. 

The question of affordability is answered by the budget impact analysis which is used 
to estimate the likely change in expenditure to a specific budget holder resulting from a 
decision to reimburse a new healthcare intervention (or some other change in policy) at 
an aggregate population level (Mauskopf, Sullivan et al. 2007, Roberts, Russell et al. 2012, 
Consortium 2016). Beyond having an idea about affordability, there is another crucial eco-
nomic question: how should the available money be spent the best way? The question 
of efficiency is answered by various types of cost-effectiveness analyses – or the so-cal-
led full economic evaluations1 – which compare at least two healthcare programs (e.g. 
medications, procedures, investments) by looking at both costs and health outcomes that 
include benefits and risks (Gray, Clarke et al. 2010). 

To meet the goals of both resource constraints and efficient allocation, healthcare ana-
lysts face a number of limitations: 

−	 Data about the effectiveness of interventions is often sparse or limited. 
−	 Clinical data is primarily designed to answer clinically, and not economically, 

meaningful questions. E.g. clinical trials target a very specific population, do not 
compare all relevant alternatives, do not encompass appropriate time horizons 
and do not provide information on economic outcomes. 

1  Four types of full economic evaluations are distinguished in health care: cost-minimization, cost- 
effectiveness (according to the narrow definition), cost-utility, cost benefit analysis. 
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−	 In healthcare there is also uncertainty around the benefits of the treatment, length 
of impacts, real-life vs. artificial (clinical) settings, heterogeneity of information 
and context-specific variations in the results.

All these limitations need to be taken into consideration by the analyst. At the same time 
there is a strong pressure to buy as much healthcare and as early as possible. Patients can’t 
wait long for decisions. There is a pressure on buyers to pay for the best available medi-
cations while their choices are limited by financial constraints. In the end some patients’ 
needs have to be traded off against the needs of others.

From the supplier’s perspective healthcare is a very resource and investment intensive 
industry. Research and development is costly, risky and time demanding. Pharma 
companies have the time only until patent expiry (appr. 20–25 years) to realize a full return 
on their R&D investments. Out of tens of thousands of molecules, only a few will reach 
the pharmaceutical market to accumulate large enough revenues to support successful 
business continuation. 

In the end, when it comes to the allocation of limited resources, healthcare decision-
makers face the pressure from both the public and industry side, where any mistake 
(e.g. delay in supporting cost-effective interventions or supporting non-cost effective 
investments) results in welfare loss to the society. 

To facilitate early and efficient decisions while at the same time circumventing 
limitations due to time and information barriers, healthcare researchers often apply 
economic modelling. Since the early seventies these methods have gone through an 
immense improvement (Weinstein 2006). The rate of development seems never-ending 
with new methods and approaches emerging as the quality and quantity of data expands, 
as needs of decision-makers change and as statistical, mathematical and computation 
methods improve. 

This piece of work gives you an overview of these techniques with regards to their 
usefulness in conducting full economic evaluations in healthcare. Specific terms and 
methods are systematically presented and discussed using the experience of the authors 
and other researchers in the field. 

First the concept of modelling is presented. Then the architecture of decision models is 
discussed, after which the model building methods are described. In the 4th and 5th chapters 
handling uncertainty and validation methods of decision models are discussed. 
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2 What is a model?

Balázs Nagy and Bertalan Németh

The term ‘modelling’ is broad in itself and specific definitions are linked to specific cont-
ents. Still János Neumann’s general definition gives the best idea of what modelling is: 
“The sciences do not try to explain, they hardly even try to interpret, they mainly make 
models. By a model is meant a mathematical construct which, with the addition of certain 
verbal interpretations, describes observed phenomena. The justification of such a mathe-
matical construct is solely and precisely that it is expected to work – that is correctly to 
describe phenomena from a reasonably wide area. Furthermore, it must satisfy certain 
esthetic criteria – that is, in relation to how much it describes, it must be rather simple.” 
(Bródy and Vámos 1995). 

In brief, models are intended to be the simplified representation of real-world situations 
that help answer specific research questions. They are  to remain as simple as possible 
while retaining the details necessary to approach the specific question (Group 2010). There 
are a number of techniques called models in healthcare, and modelling is not restricted 
to one specific method or approach.  In the end models cover the process which combines 
techniques and skills of mathematics and computation to steer people in need to the right 
direction in order to answer questions or make decisions. 

A number of things can be modelled in healthcare.  For example, models can help us 
forecast events or help us relate one concept to another including (Group 2010): 

i) future supply and demand 
ii) links between demographic and other factors 
iii) patient health behavior 
iv) healthcare access 
v) spread of communicable diseases 
vi) optimal healthcare delivery. 

Health technology assessment (HTA2), and within HTA, economic evaluation has pla-
ced some very clear requirements on researchers in terms of conducting proper analyses. 

2  HTA is a multi-disciplinary field that addresses the clinical, economic, organizational, social, legal, 
and ethical impacts of a health technology, considering its specific health care context as well as 
available alternatives International, H. T. A. (2017). What is HTA? Accessed Aug. 1, 2017. HTAi.
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These include the need to incorporate all appropriate evidence into the analysis, to com-
pare new technologies with the full range of relevant alternative options and to reflect any 
uncertainty in evidence in the conclusions of the analysis (Briggs, Claxton et al. 2006). 
The need to satisfy these requirements and overcome the issues we discussed in Chapter 
1 provides a strong rationale for using decision analytic modelling as a framework in 
economic evaluations. 

2.1  Decision analytic modelling 
Decision analysis is used to construct and structure decisions in many areas of the eco-
nomy. It includes multiple methods and tools to identify, represent and assess the impor-
tant aspects surrounding a decision – not only in healthcare but in a wide range of dis-
ciplines such as marketing law and engineering. Decision analysis for the purpose of eco-
nomic evaluation in healthcare is a “systematic quantitative approach to decision making 
under uncertainty where at least two decision options and their respective consequences 
are compared and evaluated in terms of their expected costs and expected outcomes” 
(Gray, Clarke et al. 2010). 

Decision analytic models “use mathematical relationships to define a series of possible 
consequences that would flow from a set of alternative options being evaluated. Based 
on the inputs into the model the likelihood of each consequence is expressed in terms 
of probabilities and each consequence has an expected cost and an expected outcome.” 
(Briggs, Claxton et al. 2006). These models can serve a number of purposes: 

−	 structure the research questions, 
−	 synthesize evidence, 
−	 extrapolate beyond observed data, 
−	 link intermediate and final endpoints, 
−	 generalize results to other settings of patient groups, 
−	 demonstrate uncertainty around the decision and 
−	 indicate the need for and value of further research. 

They usually do not provide straight ‚yes’ or ‚no’ answers, but a framework for decisions. 
The key purpose of decision modelling is to allow for the variability and uncertainty asso-
ciated with each decision. E.g. what are the expected costs and benefits of introducing a 
nationwide diabetes screening program for people between age 25–65, or is it worth buil-
ding an outpatient care unit in a distant town with only 10,000 inhabitants? 
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2.2  Taxonomy of decision models
A comprehensive taxonomy of decision models in healthcare3 was  provided by Bren-
nan and colleagues in 2006 (Brennan, Chick et al. 2006). Their paper gives an overview 
of model types being used for economic evaluation in healthcare. This section is based 
on their study. Table 1 shows the range of existing modelling approaches for healthcare 
technology assessment. This taxonomy divides methods according to 6 dimensions: time, 
interaction, cohort-individual level, expected values/being Markovian, randomness, and 
heterogeneity. Each grid cell in the table is related to its neighbors by varying some of 
the basic assumptions that underlie each model type. Rows 1–4 describe factors invol-
ving both time and interaction between individuals. The most commonly used healthcare 
modelling approaches are largely those in the top half of the table: models without simu-
lating interaction between individuals, and with (row 2) or without (row 1) explicitly 
modelling the passing of time. Models with interactions (rows 3, 4) are important when 
individual interactions are influential (e.g. to understand the progress of diseases as in the 
case of infectious diseases transmission in the population) or there are constraints which 
affect individuals (e.g. finite service capacity or restricted supplies of organs for trans- 
plantation). For these categories (rows 3, 4) discrete time and continuous time models are 
distinguished. 

TABLE 1 TAXONOMY OF MODEL STRUCTURES FOR ECONOMIC EVALUATION OF HEALTHCARE 
TECHNOLOGIES

A B  C D

Cohort/aggregate level/counts Individual level

  
expected value, 

continuous state, 
deterministic

Markovian, 
discrete state, 

stochastic
 Markovian discrete 

state individuals

non-Markovian 
discrete state 

individuals

1
no 

interaction 

allowed

untimed decision tree rollback simulated decision 
tree

individual sampling model: simulated patient 
level decision tree

2 timed
Markov model 

evaluated 
deterministically

simulated Markov 
model

individual sampling model: simulated 
patient level Markov model (variations as in 
quadrant below for patient level models with 

interaction)

3

interaction 

allowed

discrete 
time

system dynamics 
(difference equations)

discrete time 
Markov chain 

model

discrete time 
individual event 
history model

discrete event 
simulation

4 continuous 
time

system dynamics 
(ordinary differential 

equations)

continuous time 
Markov chain 

model
 

continuous time 
individual event 
history model

discrete event 
simulation

Source: based on Brennan et al. (2006)

3 Here models with the purpose of examining the cost-effectiveness of healthcare interventions are in 
mind.
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Columns A–D entail cohort and individual level models and disentangle assumptions 
concerning expected values, randomness, and the heterogeneity of entities. Cohort models 
in columns A, B take into account the proportion of people with common characteristics. 
They can distinguish different attributes (e.g. ages, weights, genders, stages of natural 
history of disease, or other risk factors) by subdividing the number of states or branches. 
As the number of dimensions rises exponentially (e.g. binary attributes imply the 
duplication of dimensions), these cohort models are restricted in their ability to model 
complex situations (e.g. diseases with multiple complications, patients with a long and 
complex disease history, or the progression and treatment of multi-stage diseases, (e.g. 
rheumatoid arthritis, types of cancer). In many cohort models the Markovian property is 
typically assumed, meaning that the future is conditionally independent of the past (see 
more in section 3.2). Appendix I provides detailed explanation about each grid cell.

In Appendix II an example of using 4 different modelling techniques for the same 
disease and intervention area (pertussis immunization) is presented. Model “A” presents 
a decision tree model, Model “B” presents a Markov model, Model “C” presents a discrete 
event simulation (DES) model and Model “D” presents a dynamic state transition model. 
This example illustrates how different models are applied to resolve decision problems in 
the same disease area. All 4 models focus on different levels and depth of problems using 
various assumptions on the comparator of interest, disease incidence, time horizon, herd 
immunity and other variables. In the chapter the most commonly used model types will 
be discussed in more depth.
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3 Architecture of decision 
models 

Balázs Nagy, Anett Molnár and Bertalan Németh

3.1 Decision tree cohort models
Decision tree models use a tree-like structure to present decisions and their possible con-
sequences. They identify alternatives and specify the sequence and linkage of events by 
using a branching structure in which each branch presents an event that may take place 
in the future. The consequences related to each decision take account of the probability 
of event outcomes, resource costs, and health consequences (e.g. life years, QALYs) (Gray, 
Clarke et al. 2010 pg. 188.). See an example of a decision tree in Figure 1. 

FIGURE 1 EXAMPLE OF A DECISION TREE MODEL STRUCTURE TO ANALYZE THE COST-EFFECTIVENESS 
OF PRE-HOSPITAL COMPARED TO IN-HOSPITAL THROMBOLYSIS IN PATIENTS WITH ST-ELEVATION 
MYOCARDIAL INFARCTION (STEMI) IN THE PUBLIC HEALTH SYSTEM 

Legend: AMI – acute myocardial infarction; p – Probability; PH – Prehospital; IH – In-hospital; MICU 
– Mobile Intensive Care Unit; # - 1 – the other probability. Outcomes are “cost (R$)/ life year” 

Source: adapted from Araújo et al. (2008)



14 Balázs Nagy, Anett Molnár and Bertalan Németh

Decision trees are usually constructed from left to right, starting with the decision 
node (see the small square on the left in Figure 1) and ending with the outcomes. They 
follow the logical structure of the decision problem by tracking the sequence of events 
(see Figure 1). Any events that follow the decision are chance events and are characterized 
by probabilities. These events are presented by chance nodes in the decision tree diagram 
(see the circular symbols in Figure 1). Each outcome from each chance node is denoted by 
a line (branch) attached to the chance node and labelled (e.g. ‘Diagnosis: AMI’ on Figure 
1). The likelihood of the event is represented by the branch probability (e.g. in Figure 1: 
‘p_death_PH’ = probability of prehospital death = 21.6%). 

The events stemming from a chance node must be mutually exclusive, hence the event 
probabilities should sum up to exactly 1. The order of events makes no difference in terms 
of calculating the expected value of examined strategies, however, it can have implications 
for how easy it is to perform the sensitivity analysis (see more in section 5.2) and to deal 
with complex treatment and/or disease pathways. The final outcomes from the alternative 
decision tree pathways end in terminal nodes (represented by triangles, see Figure 1). Each 
terminal node has cost and health outcome values or payoffs assigned to it (e.g. on the 
arm ‘Inhospital’ → ‘Alive: hospital’ → ‘Diagnosis: AMI’ → ‘Thrombolytic’ → ‘AMI’ the 
cost is 1422.13 and the QALY is 14.96). Payoffs include the costs related to the events in the 
decision tree and the final outcomes (life years, utilities, QALYs) and are presented in the 
model diagram at the terminal node (right of the triangles in Figure 1). 

Once all the probabilities and payoffs are entered in the model it is possible to perform the 
analysis. Modelers often say that decision trees are ‘averaged out’ and ‘folded back’ (or ‘rolled 
back’), which means that by folding back the tree the expected values of each strategy can 
be calculated. The folding back process starts at the right side of the tree and then averages 
back. As shown in Figure 1 the payoffs at each terminal node can be presented in costs and 
life-years gained which should then be multiplied by the probability of events taking place to 
arrive at any specific terminal node (i.e. as a result of the folding back process). The expected 
value of a decision is computed analytically by multiplying the probability of each outcome 
with its payoff and then summing the terminal node results related to the decision. In other 
words, the weighted average of payoffs for each strategy is summed and compared with 
other strategies’ average payoffs to finally decide on the preferred strategy. 

For example, in Figure 1 the cost of choosing in-hospital thrombolysis is calculated as: 

(1-0.219)*0.3599*0.4348*0.94 *1422.13R$ = [0.1149] *1422.13R$
(1-0.219)*0.3599*0.4348*(1-0.94) *370.22R$ = [0.0073] *370.22R$

(1-0.219)*0.3599*(1-0.4348)*0.94 *1277.13R$ = [0.1493] *1277.13R$
(1-0.219)*0.3599*(1-0.4348)*(1-0.94) *225.22R$ = [0.0095] *225.22R$

(1-0.219)*(1-0.3599)*0.0337 *1296.81R$ = [0.0168] *1296.81R$
(1-0.219)*(1-0.3599)*(1-0.0337) *19.68 R$ = [0.4831] *19.68 R$

390.32 R$
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Decision trees have to meet certain criteria: 
−	 disease and treatment should be described with mutually exclusive patient routes, 
−	 transition of patients to different routes should be based upon well-defined event 

probabilities, 
−	 timing of patients’ transition in their routes is not considered important or no 

timing of major clinical events within a route have relevance, 
−	 each determined pathway should result in well-defined costs and clinical outcomes. 

In decision trees, recursion or looping is not possible. This means that when decision trees 
are used to model diseases with lengthy prognoses or events that are likely to recur over 
time (e.g. in the case of chronic diseases) the structure does not permit movement back and 
forth between disease states. For example, the model depicted in Figure 1 is only able to 
simulate the short-term consequences of ST-elevation myocardial infarction, and recurrent 
events (e.g. next infarction or staying healthy for a while) are difficult to handle. In prin-
ciple, such problems could be addressed by adding additional branches and extending the 
time horizon of the model. But as a consequence, complicated scenarios with many alterna-
tives will manifest in long sequences of chance nodes and multiple outcomes, in which case 
the model can quickly become an unmanageable ‘bushy’ tree (i.e. many branches). 

There is no implicit time variable within decision trees: the passage of time is accounted 
for by the outcome measures or payoffs. Implementing time dependency into a decision 
tree model can be difficult. For example, in Figure 1 whenever another infarction occurs it 
will be considered at the same time as the first one. This has not only impact on estimating 
the final outcomes in terms of adjusting the quality-of-life for the appropriate survival 
time, but also on ensuring the appropriate discounting of the value of both the costs and 
outcomes. 

It is no surprise that decision trees are mostly suited to situations where events occur 
over a discrete short time period. These models provide a simple way to help identify 
strategies and their most likely manifestations/consequences/outcomes. Due to their 
design, they are also of great value in clarifying complex decisions. 

As a general rule decision trees are mostly used for cases when:
i) there is short time horizon of disease, or time is not important for the analysis, 
ii) only few and simultaneous events occur,
iii) simple back-on-the-envelope analysis of novel interventions are initiated and one 

needs quick results, 
iv) one needs to stratify multiple choice decisions and wants to “see” the problem or 

the alternatives of a decision, 
v) one needs to weigh up risks/benefits in a simplified way,
vi) one needs to analyze extreme cases/effects. 

Other modelling techniques such as Markov modelling (as we shall see in section 3.2) can 
handle complexity and longevity in a better way. Finally it should be noted that decision 
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trees can often be used as subsets of larger models. For example, a decision tree can be 
built to identify the number of cases detected by a screening program which is then follo-
wed by a Markov model to estimate future costs and effects following detection (see more 
on hybrid models in section 3.7).

3.2 Markov cohort model
Markov models were named after a Russian mathematician (Andrey Andreyevich Mar-
kov) who introduced the term “Markov chain” in 1906 (Basharin, Langville et al. 2004). 
Markov chain is a random process that undergoes transitions from one state to another on 
a state space. The process is characterized by the so-called ‘memoryless property’, whereby 
the probability of a given transition in the system is independent of the nature or timing of 
earlier transitions (Drummond and McGuire 2001). In other words, Markov models work 
on the assumption that the future state of the object is determined by a random process 
dependent only on the current state of the object. This assumption is so basic to the meth- 
odology of Markov models that it is generally referred to as the ‘Markovian assumption’ 
(Group 2010). Markov models currently dominate the healthcare literature but these meth-
ods are also widely used to model non-healthcare related real-world processes. 

Markov models, specified to healthcare, place patients (or other entities) into discrete 
‘health states’, and time is partitioned into discrete periods, known as ‘cycles’, during which 
patients are assumed to stay in the same health state. An individual can be in only one 
health state during one cycle. In each cycle, a patient’s health state may change from the 
current state to another health state (i.e. state-transition modelling) concluding each cycle 
in a finite number of states according to probabilities (Sonnenberg and Beck 1993). For each 
cycle, rewards are assigned to each health state and are earned at the end of the cycle. 
Rewards (analogous to payoffs in decision trees, see section 3.1) are expressed in costs, life 
years, quality adjusted life years or other types of healthcare/policy relevant outcomes. 

Markov models can either be described with 
i) transition probability matrices or 
ii) state transition diagrams or 
iii) repetitive decision tree structures, as shown in Appendix III.

The transition probability matrix, as well as the state transition diagram concisely describe 
the potential state changes graphically. The repetitive decision tree structure may look 
needlessly complicated, though it is very helpful when a transition is being calculated 
through a series of event probabilities. Transition probability matrices use transition pro-
babilities per cycle for patients in the cohort to change to another state. The rows of the 
transition matrix must add up to one (i.e. probabilities of moving from one health state 
need to add up to one).
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FIGURE 2 TWO WAYS TO SPECIFY A MARKOV MODEL: A) TRANSITION PROBABILITY MATRIX. B) STATE 
TRANSITION DIAGRAM 

      B

No ulcer Ulcer Amputation No ulcer after 
amputation

Ulcer after 
amputation  SUM

No ulcer 0.9996 0.0004  0.0000 0.0000 0.0000 1.000

Ulcer 0.0223 0.9679 0.0098 0.0000 0.0000 1.000
Amputation 0.0000 0.0000 0.0000 0.9996 0.0004 1.000
Ulcer after 
amputation 0.0000 0.0000 0.0098 0.0223 0.9679 1.000

No ulcer after 
amputation 0.0000 0.0000 0.0000 0.9996 0.0004 1.000

Source: based on Tesar et al. (2017)

To process a Markov model, the model is run through a series of cycles and patients are 
redistributed in each cycle. In ‘incidence models’ all patients start from the same health 
state whereas in ‘prevalence models’ all patients begin each cycle distributed across health 
states. Then in the so-called ‘cohort simulation’4 the transition of the cohort among health 
states is followed from one cycle to the next depending on the transition probabilities. This 
technically involves multiplying the proportion of the cohort ending in one state by the 
relevant transition probabilities attached to that state in order to calculate the proportion 
starting in the next state. The simulation process results in the ‘Markov trace’ which shows 
the actual pathway of patients in the model (see later in section 3.4, Figure 5). The rewards 
(costs and outcomes) for each health state are accrued for each cycle and accumulated 

4 The ‘individual level simulation’ differs from ‘cohort simulation’ in the sense that individual patients 
(instead of a cohort of patients) are directed through the model and, based on the transition proba-
bilities, they are randomly moved from one state to another – this process is repeated a number of 
times (e.g. five thousand times) to give a robust result on the expected pathways of patients (see more 
in section 3.4).
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through the entire length of the model. In the end, the accrual of costs and benefits are 
determined by the number of cycles and the proportion of the cohort that reside in each 
state over the time-horizon of the economic model. The cohort simulation provides the 
expected costs and expected outcomes for all examined strategies (e.g. the intervention 
arm and no-intervention arm) and it is possible to calculate the incremental cost-effective-
ness ratio (ICER)5 of implementing an intervention. 

Markov models have clear advantages over decision trees in situations where timing 
of events is important and when events may happen more than once and a sequential or 
repetitive nature of events is important. Instead of possible consequences over time being 
modelled with a large number of possible pathways, as in decision trees, the disease prog-
ression is reflected as a set of possible transitions between the disease states over a series 
of discrete time periods (Gray, Clarke et al. 2010). In particular, Markov models are suited 
to modelling long-term outcomes where costs and effects are spread over a long period of 
time. Therefore Markov models are particularly suited to chronic diseases or situations 
where events are likely to recur over time (Gray, Clarke et al. 2010).

As a result of the Markovian assumption, these models are “forgetful”, i.e. knowledge 
of the past is not required to predict the future. Many people believe that the Markov 
assumption causes Markov models to be extremely limited in application (Group 2010). 
For example, a person’s probability of gaining weight is partly dependent on their current 
weight, but also partly dependent on their history of weight gain. 

Nonetheless, it is, to some extent, possible to build memory into a Markov model. One 
can create new states that incorporate the memory for the desired trait. For example, in 
Figure 3 patients in a Markov model without any binge eating episode during the last week 
are assigned to health state 1 and if there is still no episode after 2 weeks then patients are 
assigned to health state 2 and after the 3rd consecutive symptomless period they reach the 
non-symptomatic health state. 

It is also possible to incorporate time dependency into transition probabilities (e.g. 
patients have a higher chance of death as their age progresses). Models with changing 
transition probabilities are called ‘process models’, while models with fixed transition pro-
babilities are called ‘chain models’. Most healthcare models are ‘process models’ since 
death is a function of age and age changes as the model time progresses, thus, changing 
the transition probabilities to death.  

5 ICER (Incremental Cost Effectiveness Ratio) is used to summarize the cost-effectiveness of a health 
care intervention. It is defined by the difference in cost between two possible interventions, divided 
by the difference in their effect.
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FIGURE 3 STRUCTURE AND PATIENT PATHWAYS OF THE COST-EFFECTIVENESS MODEL FOR THE 
TREATMENT OF BINGE EATING DISORDER 

Source: Ágh et al. (2016)

Markov cohort models are relatively simple to implement but can still simulate surprisi-
ngly complex systems. As such they are often a good first choice for modelling problems. 
However, for more complicated disease and treatment structures, the models may become 
very complex, especially in cases where the list of possible health states increases, and 
the manner in which patients move from one state to another are more difficult to track. 
Modelling complex chronic diseases where disease history matters, like diabetes, rheu-
matoid arthritis and schizophrenia, may result in an extremely large number of possible 
health states, outcomes and scenarios. For these cases, more sophisticated and flexible 
model structures may be preferred (see sections 2.2, 3.4 and 3.5 and Appendix I). 

3.3  Decision analytic survival model
There is a special subset of state transition cohort models (see models in column A–B and 
row 1–2 in Table 1 in section 2.2), which is rarely mentioned as a distinct category: decision 
analytic survival models. 

This type of modelling approach is especially common to analyze cases  in which 
disease progression can be described by a stepwise sequence of health status deterioration 
(e.g. cancer treatment strategies) (Tappenden, Chilcott et al. 2006). In these models the 
average health status of patients is continuously deteriorating: patients move from one 
state to another without the mid- and long-term ability to improve. 
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FIGURE 4 AN ILLUSTRATIVE EXAMPLE OF A DECISION ANALYTIC SURVIVAL MODEL WHERE THE COHORT 
PROGRESSION IS TRACKED WITH THE “AREA UNDER THE CURVE APPROACH” 

Key: A area = overall survival; B area = time in Chronic Phase plus time in Accelerated Phase; C = time 

in Chronic Phase; D=time in Chronic Phase and on treatment. Y axis = number of patients; X axis = time 

in the model (e.g. weeks)

In the example from Figure 4 chronic myeloid leukemia is modelled. The disease starts in 
the treated chronic phase, then patients move to the chronic untreated phase, then to the 
accelerated phase, then to blast phase and finish at death. Literally, there is hardly any 
chance for long-term improvement, i.e. the patients’ average health statuses are conti-
nuously deteriorating (although there might be differences on the individual level).  Since 
‘one-way traffic’ is being modelled the analyst is permitted to simplify the state transition 
modelling framework: the pathway of the cohort is characterized by series of survival 
curves which determine the proportion of patients for each health status at any point. To 
estimate the proportion of patients in each health status and to associate cost and benefits 
to health states, the analyst has to simply compare the ‘area under the curve’ for each 
survival trajectory at the points of interest (e.g. 1st week, 2nd week, 3rd week, see Figure 4). 

As long as appropriate empirical survival data is available, decision analytic survival 
models provide a convenient way to model continuously progressing chronic diseases. At 
the same time such structures hardly allow any flexibility when it comes to modification, 
amendment or extension of the structure (e.g. with alternative health states or treatment 
scenarios). 
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3.4  Markov simulation model
Decision trees and Markov cohort models, while being extremely useful to simulate a 
number of situations in healthcare, lack features which can be essential to mimic comp-
lex situations;  for instance, the progression of a long-term chronic disease with multiple 
comorbidities, or consequence of changes in the provision patterns in a nationwide health-
care system. Markov cohort models can be impractical and may have difficulties handling: 

−	 memory: patients’/objects’ behavior depends on their history which is difficult to 
track

−	 complicated cases: multiple complications call for many combinations of health 
states

−	 simultaneous or interrelated events: when multiple events occur together or when 
one event instantly leads to other mutually exclusive health states 

−	 differences within heterogeneous patient groups: estimation of patient pathways 
and outcomes for subgroups of patients with different characteristics

To resolve these problems, patient level simulation models (also referred to as individual 
patient sampling or microsimulation models) are applied in practice. These models, in- 
stead of progressing cohorts of patients, simulate them separately and keep track of each 
individual’s history. The simulated individuals can have heterogeneous characteristics 
which can alter their pathways in the model.

The simulation process starts by generating or selecting a group of individual patients 
with baseline characteristics (such as HbA1c, SBP, age, sex). The individual patient then 
passes through the model and when a decision node is reached, the pathway taken is 
determined according to the associated probabilities and a generated random number. 
All probability values and random numbers range between 0 and 1. When the random 
number is smaller than the probability value, the model assigns disease progression and 
vice versa.6 The path followed by different patients will differ due to chance (see Figure 5). 
This process is called the ‘Monte Carlo simulation’; it is also referred to as ‘random-walk’. 
The model results in large numbers of simulated patient histories which are aggregated 
to provide the final results. The samples are expected to be large enough to successfully 
shrink the variability (due to “random walk”) around the model estimates. 

6 This is the logic for carrying out “random walk”, however, there are other techniques to account for 
randomness in simulation models. 
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FIGURE 5 COMPARISON OF COHORT (A) AND INDIVIDUAL SIMULATION (B) IN A MARKOV MODEL 

As patients in these models are tracked individually, it is possible to reflect on patients’ 
characteristics and the history of their event. Also patients’ characteristics can be updated 
over time as appropriate, their excess risk can be recalculated when necessary, and any 
number of competing risks can be simultaneously applied. When events happen, patients’ 
characteristics can be updated. Time dependencies can be considered, and what happened 
earlier with patients can be tracked and stored for further use. There is no need to work 
of an average patient or restrict the analyses to homogeneous populations or run series of 
sensitivity analyses on different subgroups (Caro, Möller et al. 2010). Multiple comorbidi-
ties depending on multiple attributes can be modelled, while the number of health states 
can be greatly reduced and still real life circumstances can be accurately presented. 

There are disadvantages as well to using individual simulation models. First, they 
usually demand significantly more data than cohort models. If various aspects of pa- 
tient history are used to determine future prognosis, the model will require input para-
meters contingent on these patient characteristics.  Second, the computational burden of 
these models is usually more than of cohort models. Robust model outcomes require a 
large number of patients to be simulated individually, which may be time-consuming. 
Depending on the complexity, the programming language and the pc infrastructure, there 
is a large spectrum in the running time, ranging from a couple of seconds to weeks. For 
example, the extremely complex Visual Basic for Applications (VBA) programmed Syreon 
Diabetes Control Model (Nagy, Zsólyom et al. 2016) would run for a week with 20,000 pa- 
tients, while an 8 state VBA programmed model on schizophrenia (Németh, Molnár et al. 
2017) with 20,000 patients would run for approximately 2 minutes. Third and importantly, 
individual simulation models have limited flexibility to analyze uncertainty.7 Both deter-
ministic and probabilistic sensitivity analyses (see more about these methods in section 

7 Section 5.2 will outline the key concepts of uncertainty analysis in decision modelling.
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5.2) are quite time consuming for individual simulation models. For a model with 10,000 
patients a deterministic sensitivity analysis multiplies the number of runs by the number 
of variables of interest. The same model in the case of a probabilistic analysis requires two 
levels of simulation: one level based on fixed parameters to estimate a single expected 
value (first order uncertainty, see section 5.1); and a second to do sampling from a distri-
bution of possible input values to assess uncertainty (second order uncertainty, see section 
5.1). For the two levels of simulations, this would result in 100 million (10,000 x 10,000) 
individual simulations. This is only likely to be feasible for smaller patient level simula-
tion models implemented in fast performing PCs and written in a ‘simulation-efficient’ 
programming language. 

It is clear that despite their advantages patient level models are not always superior to 
cohort models. When a modelling exercise can be sufficiently carried out with the cohort 
approach patient level simulation is not encouraged. Markov cohort models are widely 
accepted by decision-makers, and only when these models reach their limits are Markov 
individual simulation techniques advised as a next step forward, which is usually the case 
when: 

−	 complex disease and treatment pathways are to be analyzed;
−	 patients can develop different complications simultaneously;
−	 individual risk varies among patients;
−	 enough data are (or will be) available to populate the model;
−	 not all data are available, but the structure of the problem necessitates a complex 

modelling approach;
−	 the existing structure is potentially extended/complicated in the long-run;
−	 the analyst has good programming skills to execute the model;
−	 the model, in spite of its great complexity, can still be kept transparent and valid 

with all assumptions remaining transferable.

It is important to note that Markov cohort and Markov individual simulation models do 
not differ much in their structure (see Figure 5) and they actually have the same logic. 
As a matter of fact, Markov simulation models can be regarded as the extension of the 
cohort models with added variability and flexibility through the use of individual pa- 
tient characteristics and the incorporation of patient history. Table 2 helps us understand 
the differences between Markov cohort and Markov individual simulation models and 
provides a good example on the choices the analyst has to make when considering state 
transition modelling.
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TABLE 2 COMPARISON OF THE FEATURES OF COHORT AND INDIVIDUAL LEVEL MARKOV SIMULATION 
MODELS 

   Markov Cohort Markov Individual Simulation

Building time disproportional increase with model 
complexity

proportional increase with model 
complexity

Data collection both types can be built using the same input data

Experience in use widely used infrequently used

Simulation time only needed for PSA needed both to process the model and run 
sensitivity analyses

Patient 
heterogeneity

can rather be handled with additional 
formulas (increasing complexity) or with 

analysis of subgroups

can be handled with defining cohort or 
using patient level data 

Memory handled through adding tunnel states handled through adding tracking variables 
to individuals

Real-World/
Construction validity limitedly applicable highly applicable

Interaction due to 
co-variates limitedly applicable highly applicable

Timing of events adjusted to cycle length

Transparency/
Validity

Transparent but if complex more difficult 
to validate Transparent if interim results are provided

Flexibility Limited in expanding the model with new 
data/assumptions

Unlimited in expanding the model with 
new data/assumptions

3.5  Discrete event simulation model
In state-transition models (i.e. Markov models as shown in section 3.2 and section 3.4) the 
world is conceptualized as a series of snapshots using mutually exclusive health states. 
These snapshots are reflections of a fixed time period (i.e. cycle). In case of greater disease 
complexity, the analyst often has to increase the number of health states or reduce the 
length of the cycle and this (even in patient level Markov simulation models) could end up 
in too large, unmanageable (and/or even imprecise) models. Moreover, in Markov models 
with little probabilities to move from one state to another, needlessly large amounts of 
computations must be executed unnecessarily (i.e. when a patient does not have an event 
over a 5-year period, the model runs excessively from cycle to cycle for five years, which 
takes up unneeded computation time). Therefore it might be more useful to step out of the 
constraints of state-transition modelling and conceptualize the world in terms of conse-
cutive events. 
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In discrete event simulation (DES) models the experience of individuals is modelled 
over time using the events that occur and the consequences of those events (Caro, Möller 
et al. 2010). Individuals undergo various events that affect their characteristics and out-
comes. The term “discrete” refers to the fact that DES moves forward in time at discrete 
intervals (i.e., the model jumps from the time of one event to the time of the next) and that 
the events are discrete (i.e., mutually exclusive). These factors give DES the flexibility and 
efficiency to be used over a very wide range of problems in healthcare (Karnon, Stahl et 
al. 2012).

The most important terms to characterize DES models are as follows: entities, attri-
butes, events, resources, queues, and time (Karnon, Stahl et al. 2012). Entities are objects 
that have attributes and consume resources while experiencing events, but consumption is 
not affected by individual-level behavior. Attributes are features or characteristics unique 
to an entity. They may change over time or not. An event is something that happens at a 
certain time point in the environment affecting resources and/or entities. Resources are 
objects that provide a service to an entity.8  

DES models do not only permit a flexible individual-level analysis but are also useful 
tools to analyze processes at the population level. For doing so, using ‘queues’ is a key con-
cept. In models queues are applied when several entities compete for constrained resources 
(Berger, Bingefors et al. 2003). A line structure enables interaction between entities to take 
place with constraints, and as such it enables a schedule of within- and between-patient 
events to occur throughout the modelling process. This allows the efficient processing 
of events as they happen throughout the population. This technique is not only close to 
real life circumstances but substantially reduces the calculation time: models can usually 
consider individuals simultaneously while the ‘model time’ is permitted to jump to the 
occurrence of the next event rather than proceed in fixed units (Caro, Möller et al. 2010). 

DES models are technically processed similarly to other individual simulation models 
(see Figure 6 and Figure 7). To represent variability in the experiences of individuals DES 
models use random numbers to indicate the expected time of events, resource use and 
other variable elements. Similarly to other model types, they provide cost and benefits 
accrued over time; all individuals and events are traceable and as in Markov simulation 
models, the outputs are aggregated in mean values and distributions of the aggregated 
values. The outputs of DES can also be expressed in system performance indicators such 
as resource utilization, wait times and number of entities in lines. 

8  Using the term ‘entities’ instead of ‘patients’ here, intentionally reflects the much wider range of 
possibilities provided by DES models compared to state-transition modelling in terms of their appli-
cation in health care.
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FIGURE 6 REPRESENTATION OF POSSIBLE PATIENT PATHWAYS IN A DES MODEL ABOUT PATIENTS WITH 
BREAST CANCER 

FIGURE 7 OVERVIEW OF THE DIFFERENT TIME-BASED MODELLING APPROACHES: A) MARKOV COHORT 
B) INDIVIDUAL LEVEL MARKOV C) DISCRETE EVENT SIMULATION 

Source: adapted from Heeg et al. (2008)

Discrete event simulation is useful for problems in which it is particularly relevant to 
capture the changing attributes of entities, and in which the processes to be characterized 
can be described by events rather than health states. DES models can provide enhanced 
modelling power in applications where exact timing is important while events are quite 
rare or unpredictable (e.g., a patient might not face an event for 2 years and then a myocar-
dial infarction occurs, with ambulance, treatment, stroke, and other events springing up 
within a couple of minutes). DES entities in healthcare are usually individual interacting 
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patients, but these models can also analyze healthcare service system resources, such as 
doctors, nurses, and ambulances for transport. With regards to the ‘queuing’ feature two 
categories of models are distinguished (Karnon, Stahl et al. 2012): 

−	 Non-constrained resource models: they accord with the common structural 
assumption that all required resources are available as needed, with no capacity 
limitations. These models are uncommon in non-healthcare applications.

−	 Constrained-resource models: incorporate capacity limitations. Represent indirect 
interactions between individuals, generally involving multiple entities competing 
for access to resources and waiting in queues.

DES is probably the most flexible of all modelling techniques in healthcare decision ana-
lysis. It provides a flexible framework to analyze a wide variety of problems. In scenarios 
where patients’ demand for particular resources and their priority status in a queue may 
be influenced by their attributes, DES is clearly the best choice. DES can also be used to 
model complex, direct interactions between individuals (e.g., transmission of the disease). 
While constrained resources pose no problems for most DES tools, special care may be 
required to model infection dynamics or multiple, correlated health risks (Brennan, Chick 
et al. 2006) (see section 3.6).

DES models have similar shortcomings to other types of individual simulation models 
(see section 3.4). An informative DES model requires a significantly richer data source 
than a typical Markov cohort model. Getting to more details such as moving from state-to-
event transition methods may require a greater number of calculations and interactions. 
Also, accurate representation requires a large enough number of simulation runs to reflect 
the true variability (the more the variability, the higher the number of runs). Since DES 
facilitates the representation of complex systems, there is a range of issues along the lines 
of development modeling, parameter estimation, implementation, analysis, and reporting 
that should be addressed. The problem of unfamiliarity with DES modelling techniques 
also implicates a reluctance of analysts to step out of the comfort zone of current modelling 
techniques (Caro, Möller et al. 2010). 

DES models with their substantially increased analytic inputs are definitely not favored 
when simpler modelling techniques are still appropriate. If describing the “average patient” 
and the “average treatment effect” without the need to explain correlations, multiple 
individual characteristics and their relation to risk and treatment effect is sufficient, DES 
is less preferred. Nevertheless for complex cases properly designed DES provides more 
accurate and relevant estimates than most modelling techniques. 
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3.6  Dynamic models
The model types discussed so far all provided a portrait of the system at a specific point 
in time. This so-called static approach means that parameters on the system level are as- 
sumed to remain unchanged; time does not have an influence on the variables of the sys-
tem. Static models typically focus on a cohort, either as a whole or as the sum of individu-
als, that ages as people progress through the model (see sections 3.1–3.5). Any change in the 
cohort as a whole has no impact on the model variables or on the modelled individuals.9 

There are areas in healthcare, especially concerning infectious diseases, where the 
dynamics of the system can have a strong influence on the outcomes of the analysis. 
When modelling the spread of communicable diseases, analyses often need to reflect the 
epidemiological effects of the interventions: the rate of infection often determines the 
number of infected individuals (i.e. the progression of the disease in the community). In 
such cases individuals who are not reached by an intervention (e.g. vaccination program) 
can still benefit by experiencing lower risk of infection. This ‘herd immunity’, defined as 
the protection for individuals who are not immune due to having a large percentage of a 
population immune, is a key notion in such models.

Let’s illustrate this with the problem of modelling the spread of infectious diseases. On 
the population level the spread of the disease can be characterized by four distinct phases 
(Brisson and Edmunds 2003, Briggs, Claxton et al. 2006): 

i) pre-vaccination period,
ii) honeymoon, shortly after the vaccination program when the number of infected 

cases is very low, 
iii) post-honeymoon epidemic, when the number of susceptible increases (through 

births) above threshold that increases the rate of infection to epidemic level, 
iv) post-vaccination endemic equilibrium, where long-term equilibrium is reached 

with lower infection levels than prior to the vaccination program.

Static models inaccurately capture these phases. They can only assume that the rate of 
infection among any susceptible population is fixed, and hence they simulate the dist-
inct periods of disease spread. Dynamic models have the feature that the risk of infec-
tion is dependent on the number of infectious agents at a given point in time. Population 
dynamics are affected both by the speed of disease spread and the number of newcomers  

9  Note that in most static models the passing of time does have an influence on the cohort’s/patients’ 
progression (e.g. age dependent mortality rate). What is meant here is that in dynamic models fun-
damental (and consequently fixed) characteristics of the cohort change by the passing of time, e.g. 
the age dependent mortality rate for two identical cohorts is different in a dynamic model because 
the two cohorts start the model in different years (e.g. the second cohort starts 5 years later) when 
the system environment has changed (e.g. due to more innovative technologies age-specific mortal-
ity rates decrease). Hence fundamental parameters are altered in the dynamic model.
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(e.g. birth) – both may change with time. In this way dynamic models allow for the effect 
of herd immunity and are run over many years on the basis of multiple cohorts. 

Figure 8 provides an example for varicella infection control, modelled by using a static 
and a dynamic model. The various epidemiological phases of disease spread, as pre-vacci-
nation (1), honeymoon (2), post-honeymoon (3), equilibrium (4), are shown for the dynamic 
(a) and static (b) models. The estimated age-specific incidence of natural varicella after the 
introduction of infant vaccination (from origo in Figure 8) greatly differs between the 2 
modelling approaches: the static model overestimates the incidence of the infection. 

FIGURE 8 PREVACCINATION AND POST-VACCINATION DYNAMICS OF VARICELLA INFECTION USING 
DYNAMIC (A) AND STATIC (B) MODELLING APPROACHES. 

Key: 1) pre-vaccination period, 2) honeymoon period, 3) post-honeymoon period, 4) equilibrium.

Source: Brisson et al. (2003)

Dynamic modelling is not necessarily a must when modelling all infectious diseases, or 
similar types of situations. Static models are still acceptable if target groups eligible for 
the intervention are not epidemiologically important (e.g., evaluation of hepatitis A vacci-
nation in travelers from low- to high-incidence countries), or when effects of immunizing 
a given group are expected to be almost entirely direct (e.g., vaccination of the elderly 
against influenza or pneumococcal disease) (Pitman, Fisman et al. 2012). But where static 
models project interventions to be unattractive or borderline attractive (i.e., close to wil-
lingness-to-pay thresholds) supplementary dynamic modeling is often recommended as 
an alternative to evaluate whether the inclusion of time dependent system-level variables 
alter the projected outcomes (Pitman, Fisman et al. 2012). 
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It is important to note that, technically the execution of dynamic models can take 
many forms. They may be performed with (Pitman, Fisman et al. 2012):

−	 deterministic or stochastic results, 
−	 individual or cohort-based simulation, 
−	 economic, health or standalone epidemiological outcomes, 
−	 simple explorations of the system or a very detailed analysis with many parameters. 

Dynamic modelling is not restricted to decision modelling of healthcare interventions. It 
has great potential in further areas of healthcare, such as modelling physiological interac-
tions in the body that affect treatment outcomes or networks of related diseases (Brennan, 
Chick et al. 2006). They can also be used to examine the evolution of complex systems, 
processes and interactions between entities. Because of the time component, dynamic 
models can provide a representation of the evolution systems and this generally allows for 
more accurate predictive properties.

3.7  Combining/Hybrid models
In this chapter distinct forms of decision analytic models have been discussed so far. 
Nonetheless, rather than using a single type of modelling approach to describe a decision 
problem, a combination of these techniques is often more viable; especially when the deci-
sion problem necessitates models which are built up using the combination of multiple 
modelling techniques. 

Figure 9 provides an example of combining various modelling techniques. The ana-
lysis of population screening with low dose CT to detect lung cancer is carried out via 
modelling a one-time procedure and the evolution of a progressive disease. First, patients 
enter a decision tree model in which they face screening for lung cancer with low dose CT 
followed by other confirmatory diagnostic processes. Then patients based on the diagnosis 
are followed in various sub-models: i) Markov model for patients without lung cancer  
ii) Markov model for patients with undiagnosed lung cancer iii) cancer stage-based sur-
vival model for patients with diagnosed lung cancer. Patients can be processed through 
the model as a cohort or as individuals; the latter technique provides more flexibility to 
take into account the heterogeneity (subgroups) of patients and their patient history tracks. 
A similar approach for the case of diabetes screening and for modelling long-term ADHD 
is provided in Appendix IV.

As it will be discussed in the next chapters, choices on appropriate techniques and their 
implementation depends on a number of circumstances and successive decisions. 
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FIGURE 9 THE MODEL OF LOW DOSE CT SCREENING COMBINING A DECISION TREE, A SURVIVAL, AND 
TWO MARKOV MODELS 

Source: based on Vokó et al. (2017)
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4 Building decision 
models 

Balázs Nagy and Ahmad Fasseeh

Building decision models requires careful preparation with regards to setting up the 
model concept, planning and coordination of model development, analysis of outcomes 
and validation of the results. Methods are strongly determined by the research question, 
context and resources. At the same time there are common rules to be followed by model 
developers. 

4.1  The model concept
The development of good decision models starts with conceptual modelling as a first step. 
This essentially requires the developer to understand the complexity of the ‘real-world’ 
that will have to be represented. Then choices available for translating this ‘world’ into 
a credible conceptual and mathematical structure need to be explored (Tappenden 2012). 
As a result of these steps the model is abstracted from a real or proposed system with sim- 
plification and assumptions – based on what is not known about the real system (Robinson 
2008). The essence of good conceptual modelling is to get the level of simplification correct, 
i.e. the modeler has to abstract at the right level (Robinson 2010). 

The model concept is fundamentally a theoretical construct, representing (often 
visually) the processes, relationships, and variables considered to be important within the 
system under scrutiny. It describes without technical specification the objectives, inputs, 
outputs, content, assumptions and simplifications of the model. The concept development 
is both driven by needs and conditions, and it both drives and is driven by the variables 
that are considered important in the world to be abstracted (Group 2010). 

Two phases of model concept development is distinguished by Tappenden (Tappenden 
2012): problem conceptualization and model conceptualization (Figure 10). 
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FIGURE 10 KEY DETERMINANTS OF CONCEPTUAL MODEL DEVELOPMENT

Note: This Figure synthesizes two sources: Tappenden 2012, Roberts and Russel et al. 2012

During the problem conceptualization the modeler, in conjunction with other stake-
holders, determines what is relevant to the decision problem, and at the same time, what 
can reasonably be considered irrelevant. This process builds upon several factors (adapted 
from Roberts, Russell et al. 2012):

−	 Policy context:  the model scope and the structure should be consistent and 
adequate with the decision problem and its environment – including the funder, 
the developer, the policy audience and whether the model is for single or multiple 
applications.

−	 Disease spectrum: the model should represent disease processes appropriately; it 
should address all disease processes which are necessary to characterize the specific 
healthcare program of interest.

−	 Target population: the model population should be defined in terms of features 
relevant to the decision such as geography, patient characteristics, including 
comorbid conditions, disease prevalence and disease stages.

−	 Alternative strategies and interventions: choices on the comparators of the 
healthcare program should be driven by the nature of the problem, not solely by data 
availability or quality. All feasible and practical strategies should be considered.

−	 Perspective of the analysis: model outcomes should be consistent with the perspective 
stated and defined. Included and excluded outcomes should be determined in 
relation to the perspective. 

−	 Value drivers: crucial features of the assessed technologies having influential 
impact on the model outcomes should be taken into account without exception. As 
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a general approach, there is a value in having any sort of underlying biological or 
clinical process with significant influence on the model outcomes. 

−	 Model outcomes: 
o health outcomes may be events, cases of disease, deaths, life-years gained, 

quality-adjusted life-years, disability-adjusted life years, or other measures 
important to stakeholders, should be directly relevant to the question being 
asked. 

o resource use and costs of interventions in the analysis should be clearly defined 
in terms of frequency, component services, dose or intensity and duration. 

−	 Time horizon of the analysis: this should be long enough to capture relevant 
differences in outcomes across strategies. It should be set as long as any change in 
the difference between the outcomes of the competing strategies is observed.

Model conceptualization represents the components of the problem by presenting parti-
cular analytic methods and processes and directs the decision as to which modeling tech-
nique to use. Crucial stages of model conceptualization are as follows (Roberts, Russell et 
al. 2012, Tappenden 2012):

−	 Set up the team and process: work can relate to expert consultations, influence 
diagrams, concept mapping, or any other method which converts the problem 
conceptualization into an appropriate model structure, ensuring it reflects current 
disease knowledge and the process modeled. All resources (personnel, time, 
software etc.) to carry out the work should be identified.

−	 Review the evidence: any decision should carefully consider the possible sources of 
evidence to inform conceptual models. These sources include: 
o clinician inputs
o existing systematic reviews
o clinical guidelines
o existing efficacy studies
o existing economic evaluations or models, and
o routine monitoring sources. 

−	 Specify structure features based on several factors such as 
o unit of representation: individuals or groups,
o interactions between individuals,
o time horizon and time measurement, 
o resource constraints (if any). 

−	 Determine modelling technique: for some problems certain types of models, such 
as decision trees or Markov models, for other problems, combinations of model 
types, hybrid models and other modeling methodologies might be appropriate. Such 
judgements are based on series of conditions which are often trading off against 
each other (see more in 4.2). An example of such trade-offs is seen on Figure 11 
which compares the strengths and weaknesses of using decision tree, Markov 
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cohort, Markov simulation, and discrete event simulation techniques. The further 
away from the center the relevant line covers the specific axis, the better this kind 
of modelling is compared to the others with respect to the particular modelling 
characteristic. Important to highlight that these criteria do not necessarily have the 
same weight and one may depend on another.

FIGURE 11 STRENGTHS AND WEAKNESSES OF COHORT DECISION TREES, COHORT MARKOV MODELS, 
MARKOV SIMULATION MODELS AND DISCRETE EVENT SIMULATION MODELS FOR APPLICATION IN A 
CHRONIC COMPLEX DISEASE SUCH AS SCHIZOPHRENIA. 

Source: adapted from Heeg et al. (2008)

Selecting the appropriate level of detail is one of the most difficult decisions developers 
face. The model must be complex enough to capture the differences in value (e.g. health 
gains or cost savings) across the compared strategies and provide the ability to cover all 
important dimensions of reality to make right decisions. Models that are too complex 
may be difficult to build, debug, analyze, understand, and communicate. Simplicity is also 
desirable for transparency, ease of analysis, validation and description. However, simpli-
city cannot overrule the aspiration for an adequate level of accuracy. Models that are too 
simple may lose face validity because they do not incorporate all aspects recommended by 



36 Balázs Nagy and Ahmad Fasseeh

content experts (e.g. by clinical experts and other healthcare professionals). In particular, 
if the experts and practitioners within the system do not trust the conceptual model, it will 
remain unused, regardless of its quality. 

Model building is a fundamentally iterative process. So, whether conceptual modelling 
is being performed formally or informally, it continues to be refined before, during and 
after the model has been developed (Robinson 2010) (see more in section 4.2). Moreover, it 
may happen that while building a model based on an initial concept, it becomes clear that 
the chosen approach is not appropriate and a new modelling approach has to be chosen to 
transform the concept into a usable model (Group 2010).

4.2  Model development process
Despite of the specifics of process and methods, it is difficult to set out distinct methods 
and procedures which will unquestionably have to be followed. The ‘art’ of model building 
is largely learned by experience and strongly depends on the ability of the modeler to 
synthetize the various aspects of model development into an optimal solution. 

The process of model development10  is  an  iterative  exercise  that  does  not  linearly 
proceed with time, tasks and other working blocks. The process starts at the point of 
thinking about the analysis and is not finalized perhaps until quite close to the end of 
the whole project. Modelers constantly need to seek for advice about whether or not 
they have proceeded the correct way and used the best available methods to replicate 
reality. This  is profoundly  iterative process has a number of crossroads,  junctions and 
possible U-turns. Steps of model development are shown on Figure 12. 

FIGURE 12 THE STEPS OF THE MODEL DEVELOPMENT PROCESS 

10  Including model conceptualization, as seen in Chapter 4.1
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4.2.1 Understanding the decision problem 

Understanding the decision problem (also called problem conceptualization, see 4.1) is part 
of developing the model concept. The decision problem can be presented as a construct 
representing (often visually) the processes, relationships and variables considered to be 
important. The scope of a modelling problem helps define the boundary and depth of a 
model and identifies the critical factors that need to be incorporated. Understanding the 
decision problem may involve several activities (Chilcott, Tappenden et al. 2010): 

−	 setting up the research question, 
−	 engagement with clinicians, 
−	 engagement with decision-makers,
−	 engagement with methodologists (e.g. analysts, modelers), 
−	 gaining an understanding of what is sufficient and feasible. 

Models intended as “multipurpose” tools that start without a clearly defined question 
generally end up without any clear conclusions (Chilcott, Tappenden et al. 2010). Con- 
versely, models designed with a clear purpose in mind, once validated, can often be easily 
adapted to other purposes (Group 2010). More details about problem conceptualization 
were shown in section 4.1.

4.2.2 Forming the conceptual model 

Once the decision problem has been identified the information surrounding the decision 
needs to be synthesized and converted into a particular analytic method. This is expected 
to provide the technical framework of the analysis (see also model conceptualization in 
section 4.1). This process considers the available inputs and the applicable design together 
and in relation with the decision problem. 

Selecting the appropriate modelling technique is driven by many factors (see all in 4.1). 
Very few research questions have a unique solution and most healthcare decision problems 
can be solved in more than one way. Likewise, more than one modelling approach is 
possible, each having advantages and disadvantages. Similar results might be obtained 
using different modelling techniques which is a good indication of making the right 
choices on the concept and structure (see more in chapter 0). 

4.2.3 Processing and implementing the model 

Following the model concept the specified model has to be implemented in such a way as 
to produce answers (e.g. predictions) with regards to the questions of interest. The idea is 
that everything on paper has to 

i) be translated to a mathematical construct, 
ii) be populated with data and 
iii) provide sensible and interpretable results. 
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While setting up the model concept and choosing the appropriate modelling structure 
and technique are rather straightforward processes, things can become less foreseeable 
when it comes to implementation. From this point on, the number of iterations between 
the various model building blocks (see Figure 12) significantly increases. There is a lot 
of interaction, especially with the blocks of data collection and validation. The process 
of populating a model involves bringing together all relevant evidence and synthesizing 
them appropriately given the modelling framework and parameters. A populated model 
helps determine which variables are important to characterize the decision problem, test 
decision validity, and tune the model to make appropriate predictions. 

The required level of mathematical and computational programming is strongly driven 
by the complexity of the model, the programming language and the software environment 
in which the calculations are embedded. There are dozens of software environments 
in which healthcare models are developed. In most cases Microsoft Excel using VBA 
programming is sufficient. However, there are other, user friendly modelling solutions, 
such as Treeage, ARENA, heRo3 and Simul8, applicable for healthcare which in certain 
situations might be more efficient than the traditional Excel-based programming. When 
necessary, modelers may choose platforms requiring the use of programming languages 
like the very flexible R mathematical package or programming languages as Java, Python 
or C++. 

4.2.4 Validate the model 

During and after the implementation of a model it has to be tested for validity. This process 
substantiates that the model performs with satisfactory accuracy within the domain of its 
applicability. This includes engaging with clinical experts to check face validity, testing 
extreme values, checking logic, data sources etc. The validation process involves several 
methods and is carried out (by applying different elements and methods) throughout the 
entirety of the model building process. See more details on model validation in section 0.

4.2.5 Engaging with the decision 

Once the finalized model is implemented, tested and tuned it can be applied to support the 
decision-making process. This phase mostly concerns the reporting and use of the model 
bearing in mind the decision-making rules. Outcomes have to be able to answer specific 
questions and the analysis has to provide details about the uncertainty around the model 
estimates as well. 

Nevertheless, the model does not only provide explicit results, but it should provide 
convenient tools to explore certain properties of system behavior as well. For example, if a 
healthcare ministry has a budget for only a fixed number of physicians, they may wish to 
know where to locate those physicians in order to achieve optimal patient care. In general, 
the process of model optimization is applied to answer this type of question. Often the 
question can be written as “which selection of parameters minimizes the cost such that the 
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desired result occurs?” Finding the answers to such questions has become a field in itself 
and can be accomplished by a number of different means (Group 2010). 

The most common method to explore uncertainty and model behavior is via sensitivity 
and scenario analyses (see more in section 5.2). It is often useful to test parameters with 
extreme values to see if they change the conclusion of the analysis (i.e. change the decision).

Finally, no matter how well a model is tested, tuned, and implemented, it can only 
examine the aspects of the system it was designed to study. After a model is created and 
final results are obtained, a common mistake is to over-interpret the importance of the 
results and assume causality where only association is present (Group 2010). 

4.2.6. Collect and use evidence, clinical input and other data

It is often said that models are only as good as the data used to test and tune them. Data 
collection is a strong influential factor in healthcare model development and the quality of 
data and subsequent analysis often imposes limitations on the quality of models and their 
results. As a rule of thumb, models are designed and tested with all data that are available; 
the final implementation uses the most feasible and appropriate set of variables. 

Information on model variables is often extracted from data collected for other purpo-
ses; as a result, data may be biased, inaccurate or contain errors. The modelling framework 
should allow for the handling such discrepancies through integrating tools by which the 
most precise estimation can be achieved. Several models for example use competing met-
hods to estimate patients’ quality of life, by either using multiplicative or additive ag- 
gregation techniques. Supporting tools often come from methods of evidence synthesis 
such as meta-analysis, network meta-analysis, mixed treatment comparison, utility 
mapping and Bayesian statistics. 

Models in healthcare are often built on a set of assumptions, some of which are test-
able and others that are not. These assumptions must be clearly stated and, whenever 
possible, tested. Often supporting statistical analysis will inform the modeler that some of 
their basic assumptions about the system were wrong, forcing the modeler to take a step 
backwards and form a new conceptual model for the problem. This may occur when a 
modeler determines that a variable assumed to be insignificant turns out to be significant 
or vice versa.

It is not difficult to conclude that generating evidence should be carried out throughout 
the entire process of modelling and can be influential in all steps, as illustrated on Figure 12.

4.2.7 Revise, improve and adapt the model 

Regardless of the computational environment, the data being used and the assumptions 
made, the modeler will need continuous feedback on the development process. Are the 
formulas correct? Do the input data and assumptions reflect reality?  Are the results inter-
pretable, and do they make sense to support the purpose of the analysis? 
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As discussed earlier even after the first model results the model structure, methods or 
some of the inputs and assumptions might be reconsidered and minor or even major chan-
ges are initiated. Such activities are often commenced after the core model is completed 
and the first adaptation to another environment is carried out. 

Another driving factor of model improvement is directed by the raising of further 
research questions. The efforts to answer these novel questions by testing the model in new 
circumstances could help find logical or input discrepancies.
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5 Handling uncertainty in 
decision models 

Balázs Nagy, Ahmad Fasseeh and László Szilberhorn

Chapter 1 discussed that choices have to be made by healthcare decision-makers now and 
not later. There should be a clear ‘yes’ or ‘no’ answer to reimbursement and other resource 
allocation questions. In order to make the best decision one needs to be aware of the level 
of confidence in the findings. 

All models are limited in their capacity to capture real-life circumstances. This may 
happen due to lack of good quality evidence, inappropriateness of the data, uncertainty 
around long-term prediction, or for other reasons. While in reality, the value of a model 
input parameter (e.g. cost of hospitalization) is distributed around a mean the modeler’s 
analysis is often based on single point estimates (such as the mean or median value). 
Such ‘deterministic’ values do not inform us about the variability in data and sources. 
Ambiguity around the model structure, the extrapolation methods or other factors can 
also be a subject of uncertainty. In the end deterministic results are able to reflect only a 
portion of uncertainty around selected components of the analysis (Berger, Bingefors et 
al. 2003). Hence, economic models are strongly advised to assess uncertainty around all 
possible aspects of the analysis. 

Methods for showing and handling uncertainty are collectively referred to as a 
sensitivity analysis. Such analyses serve two main purposes: i) assess the confidence in 
the chosen course of action supported by the model and ii) ascertain the value of collecting 
additional information to better inform the decision (Briggs, Weinstein et al. 2012). These 
are discussed in the following sections.

5.1  What is uncertainty?
In the context of decision analytic modelling, uncertainty can be defined by using four 
broad categories (Briggs, Sculpher et al. 1994, Gray, Clarke et al. 2010, Briggs, Weinstein 
et al. 2012): 

−	 variability (or stochastic uncertainty), 
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−	 heterogeneity, 
−	 parameter uncertainty and
−	 model (structural and methodological) uncertainty. 

The health economic literature has discussed these four broad terms in a variety of ways. 
In the context of decision analytic modelling, uncertainty is mostly referred to as having 
imperfect information about the precise values of the parameters of interest, or about the 
applicability of methods being used to design and build the model. This definition restricts 
the focus to parameter and model uncertainty and omits variability and heterogeneity. 

Variability, in this context, refers to the inherent random variation between different 
subjects (see more in section 5.1.1) and heterogeneity relates to variation between subjects 
that can be explained and attributed to specific factors (see more in section 5.1.2). These 
two categories are important to understand uncertainty, however, in the context of 
economic evaluations, they do not necessarily contribute to the uncertainty defined above. 
Nevertheless, we still consider these categories, to the extent it is deemed important to 
understand the broad picture of uncertainty for economic modelling in healthcare. 

The four concepts of uncertainty are summarized in Table 3 and in the forthcoming 
paragraphs. Also analogous concepts used in the field of regression analysis are presented 
in Table 3 to support explanation.

TABLE 3 TYPES OF UNCERTAINTY FOR DECISION MODELLING: CONCEPTS, SYNONYMS AND ANALOGIES

term  concept synonym term sometimes 
employed

analogous concept in 
regression analysis

Stochastic 
uncertainty  

random variability in 
outcomes between 
identical patients

variability, Monte Carlo error, 
first order uncertainty error term

Parameter 
uncertainty  

the uncertainty in 
estimation of the 

parameter of interest
second order uncertainty standard error of the 

estimate

Heterogeneity  

variability between 
patients that can 
be attributed to 

characteristics of those 
patients

variability, observed or 
explained heterogeneity

beta coefficient 
(or the extent to which the 

dependent variable varies by 
patient characteristics)

Structural 
uncertainty  the assumptions inherent 

in the decision model model uncertainty
the form of the regression 

model  
(e.g. linear, log linear)

Source: adapted from Briggs et al. (2012)
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5.1.1 Variability, stochastic uncertainty

We can think about variability as the variation or randomness we observe when recording 
information on resource use or outcomes within a homogenous sample of patients (Groot 
Koerkamp, Weinstein et al. 2010). This uncertainty is entirely due to chance. It is also 
referred to as first order uncertainty or stochastic uncertainty (Briggs, Weinstein et al. 
2012). It relates to the fact that individuals facing the same probabilities and outcomes will 
experience the effects of a disease or intervention differently11. This type of uncertainty 
reflects the inherent variability that exists in the parameters of interest between patients 
within a population (Andronis, Barton et al. 2009). Consequently, variability is reflected in 
the standard deviations associated with the mean value. In regression analysis this type 
of uncertainty is analogous to the error term (see Table 3). If a stakeholder is not interested 
in individual patient outcomes, then the analysis of stochastic uncertainty in patient level 
models only increases ‘noise’ around the expected outcomes (Groot Koerkamp, Weinstein 
et al. 2010).

5.1.2 Heterogeneity

Heterogeneity relates to observed differences between patients which can in part be expla-
ined by their characteristics (e.g., age- and sex-specific mortality) (Gray, Clarke et al. 2010, 
Briggs, Weinstein et al. 2012). For example, the hospital costs arising as a result of myocar-
dial infarction may differ between young and old patients because older patients typically 
spend a longer time in the hospital. There will still be variability between patients within 
each of these subgroups in terms of whether or not they will experience a particular 
outcome over time. However there is no uncertainty here considering that the baseline 
characteristics will be known with certainty. Baseline patient characteristics can influence 
each estimated parameter in the model: for example, we can distinguish heterogeneity in 
treatment effects, in costs, and in utilities (Groot Koerkamp, Weinstein et al. 2010). 

As was pointed out in the introduction of this section, heterogeneity is not a source of 
uncertainty as it relates to differences that can in principle be explained. Its relevance lies 
in the identification of subgroups for whom separate cost-effectiveness analyses should be 
undertaken. Such analyses may inform us of alternative decisions regarding the service 
provision to each subgroup, or may contribute to a weighted analysis of the aggregate 
group (Briggs, Weinstein et al. 2012). The analogous term in regression analysis is the 
beta coefficient or the extent to which the dependent variable varies according to patient 
characteristics (see Table 3).

11 Just as a fair coin might come up heads or tails on any given toss (e.g., the first patient in a sample 
might respond to a treatment but the next may not; the first may not experience an adverse effect 
but the second may; the first may stay in hospital for 2 days and the second for 3 days)(Briggs 2012).
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5.1.3 Parameter uncertainty

Parameter uncertainty relates to the accuracy in the parameter/input estimates that is 
used for the analysis, such as transition and event probabilities, costs, utilities, treatment 
effects, or the mean length of hospital stay. It reflects the uncertainty that arises from 
the imperfect knowledge of true values of the parameters that are used in the analysis 
(Andronis, Barton et al. 2009). The term parameter uncertainty is not equal to the uncer-
tainty around the realization of individual events or outcomes (see first order uncertainty 
in section 5.1.1). Parameter uncertainty is also referred to as second order uncertainty12 
(Briggs, Claxton et al. 2006). It is analogous to the term standard error in regression analy-
sis which calls to mind the distinction between standard deviation (estimate of how indi-
vidual observations within a sample vary) and standard error (precision of an estimated 
quantity) (Briggs, Weinstein et al. 2012).

There is no doubt that this type of uncertainty needs to be reflected in the cost-effec-
tiveness analysis. This can either be represented via a deterministic sensitivity analysis 
(DSA) or a probabilistic sensitivity analysis (PSA) (see more in sections 5.2.1 and 5.2.2). The 
latter facilitates the estimation of additional uncertainty measures such as the expected 
value of perfect information (EVPI), which may be estimated for the model as a whole, or 
for specific parameters or sets of parameters (expected value of partial perfect informa-
tion, see more in section 5.3).

5.1.4 Model uncertainty

The model, once finished, is still dependent on a number of assumptions. Decisions have to 
be made about the natural course of the disease, the impact of medical interventions, the 
clinically and economically meaningful outcomes, and the inclusion of relevant events, 
comparators and use of statistical estimation methods. The final form of the model is also 
influenced by the complexity to be reflected by the analyst and the time available for 
development (see in section 4.1 and 4.2). Uncertainties around the structure, the methodo-
logy and the process all contribute to the term we refer to as model uncertainty.

As the subset of model uncertainty, structural uncertainty concerns the decisions and 
assumptions we make about the structure of the model such as the inclusion of relevant 
states, the established links between states and also the way the intervention and disease 
pathways are modeled. 

Another subset of model uncertainty is methodological uncertainty. This concerns the 
combination of methods used by the analysts who carry out the analysis; i.e. if the analysis 
was conducted again by another team of analysts, the results might be different due to 
the use of other techniques/data. This is the case, for example, when patient’s survival is 

12 Following the example in footnote 11, no one will doubt that a head is a head and a tail a tail (second 
order uncertainty), but one may doubt what a throw of a fair coin will show (first order uncertainty). 
If one does in fact doubt the fairness of the coin, then we refer to second order uncertainty.
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predicted first by using independent survival curves or alternatively by a Cox proportional 
hazard model – two fundamentally different methodologies. 

The third subset of model uncertainty is process uncertainty which relates to questions 
about the appropriate methodology to combine the input parameters (Andronis, Barton 
et al. 2009). Such uncertainty occurs when, for example, model states can be designed 
i) to appropriately correspond with quality-of-life estimates available in the literature or 
ii) rather to match with important cost items (e.g. surgical interventions). Both approaches 
will have different consequences regarding the use of further inputs and also concerning 
the final model estimates. 

Model uncertainty can be as important as parameter uncertainty and any disagre-
ement about these features may be a reason to undertake a sensitivity analysis (Briggs, 
Weinstein et al. 2012). The analogous term to model uncertainty in a regression analysis is 
the exact form of the regression model (see Table 3).

5.1.5 Handling uncertainty in decision models

The impact of uncertainty should be assessed in decision models. The most influential 
parameters and their impacts on the model results should be identified, quantified, and 
interpreted. Depending on the type of uncertainty there are various ways to present and 
deal with uncertainty issues (Briggs, Claxton et al. 2006, Briggs, Weinstein et al. 2012):
−	 Variability in most decision models (especially simulation models) is largely a 

by-product of the modelling process rather than an attempt to capture a real-world 
phenomenon and so the analytical concern is to take steps to eliminate variability 
from the results. This, for example, in individual simulation models can be done by 
increasing the size of the simulated sample (see in section 3.4). 

−	Heterogeneity should be handled by providing a flexible modelling framework. 
A model may be rerun for different subgroups, or an overall measure of cost-
effectiveness (across the entire population) can be reported together with 
variability measures (e.g. standard error of the mean) due to patient heterogeneity. 
Heterogeneity can also be handled by making model parameters a function of 
other parameters: e.g. basic transition probability is a function of age or disease 
severity. The process involves simultaneously switching the parameter values and 
assumptions according to the corresponding subgroup of interest.  

−	 Parameter uncertainty is the most widely researched and published area of 
uncertainty which is handled through either deterministic or probabilistic 
sensitivity analyses (see more in section 5.2).

−	Model uncertainty is a moderately researched area, although its influence on the 
model results can be even greater than for all other types of uncertainty. Model 
uncertainty is usually handled by performing various types of deterministic 
sensitivity analyses and scenario analyses (see more in section 5.2). 
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5.2  Sensitivity analysis
In sensitivity analysis (SA) model parameter estimates are varied across a range to deter-
mine the impact of their change on the model outputs (Briggs, Weinstein et al. 2012). The 
process can be carried out on parameter values, assumptions, methods, or anything else 
which can be varied within a reasonable range. Two major types are distinguished:

−	 Deterministic sensitivity analysis (DSA) evaluates the influence of uncertainty in 
one or more parameters on the expected outcomes (Groot Koerkamp, Weinstein 
et al. 2010). These parameters are manually changed usually across a pre-specified 
range. 

−	 Probabilistic sensitivity analysis (PSA) is the stochastic evaluation of the model 
which permits the joint uncertainty across all parameters to be assessed at the same 
time. It involves sampling model parameter values from distributions imposed on 
model variables and the generation of cost and effectiveness estimates (Gray, Clarke 
et al. 2010). 

DSA’s and PSA’s main focus is on the analysis of parameter uncertainty and they put less 
emphasis on the analysis of other types of uncertainties (as discussed earlier in section 
5.1). 

5.2.1 Deterministic sensitivity analysis

DSA in its simplest and most commonly used form is carried out via a one-way (or univari-
ate) deterministic sensitivity analysis: the value of one variable is varied independently and 
singly within a plausible range, while the other variables are kept constant. The range of 
variation of each parameter is usually pre-specified, and where appropriate it corresponds 
to the uncertainty in that parameter reported in source studies. It can be from highest to 
lowest if a range of estimates is available or within 95% confidence limits if reported or 
simply within a plausible range which could be arbitrary (Gray, Clarke et al. 2010). 

In a multi-way (or multivariate) deterministic sensitivity analysis more than one para-
meter estimate is varied simultaneously. A two-way analysis is useful to test the two most 
important parameters from the perspective of the analysis (e.g.: the main value driver of 
the intervention and price in an early-phase pricing model). In a scenario analysis mul-
tiple variables are changed to form a distinct alternative case compared to the base case 
analysis. Parameters can simultaneously be set for extreme scenarios: optimistic best case 
scenario, or pessimistic worst case scenario. Another form of sensitivity analysis is thresh-
old analysis in which the critical value of parameters changing the decision are identified 
– e.g. set of parameter values resulting in the support or rejection of a reimbursement 
decision.

One-way and multi-way sensitivity analyses may be carried out on a sequential basis. 
A one-way sensitivity analysis can be graphically presented on a tornado diagram: the 
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most critical variables in terms of impact on the model outcome are at the top of the graph 
and the rest are ranked according to their impact thereafter (see Figure 13). The tornado 
shape arises by ordering the bars by their width, starting with the widest at the top. In 
the two-way sensitivity analysis the calculated ICERs can be presented in a matrix‐like 
framework where the rows and columns provide the results of changing two variables 
together (see Table 4).

FIGURE 13 TORNADO DIAGRAM ILLUSTRATING THE 15 MOST INFLUENTIAL VARIABLES OF A COST-
EFFECTIVENESS MODEL 

TABLE 4 RESULT OF THE TWO-WAY SENSITIVITY ANALYSIS IN AN EDUCATIONAL MODEL

Drug Price → $800 $1,000 $1,200 $1,400 $1,600 $1,800 $2,000

Effectiveness ↓

80.0% $436 $2,512 $4,587 $6,663 $8,739 $10,814 $12,890

77.5% $3,193 $4,875 $6,558 $8,241 $9,924 $11,607 $13,289

75.0% $5,072 $6,487 $7,902 $9,317 $10,732 $12,147 $13,562

72.5% $6,435 $7,656 $8,876 $10,097 $11,318 $12,538 $13,759

70.0% $7,469 $8,542 $9,616 $10,689 $11,762 $12,836 $13,909

For a deterministic sensitivity analysis a clear and full justification for the choice of vari-
ables is required. Also a clear explanation of the information source used to specify the 
ranges is necessary. When the sensitivity analysis involves an analysis of extremes, the 
analysts should justify the extreme values chosen and provide a clear presentation of the 
analysis in order to allow the reader to assess the analysis relative to their own context. 
When the value of a model parameter is indeterminate, a threshold analysis is particularly 
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useful, but there is a need to provide a clear rationale for, and definition of, the threshold 
applied (Andronis, Barton et al. 2009).

5.2.2 Probabilistic sensitivity analysis

A more complete assessment of parameter uncertainty in health economic models calls 
for a probabilistic sensitivity analysis. PSA assigns a specified distribution to each input 
parameter and, by drawing randomly from those distributions, generates a large num-
ber of mean cost and effectiveness estimates that can be used to form an empirical joint 
distribution of the differences in cost and effectiveness between interventions (Andronis, 
Barton et al. 2009).

The process starts by specifying a probability distribution for each parameter of 
interest. Each distribution represents both the range of values that the parameter can 
take, as well as the probability that it takes any particular value. Then by running a so- 
called second order Monte Carlo simulation, a value is selected for each parameter from 
its individual probability distribution. The analysis is repeated a large number of times to 
propagate uncertainty and present a distribution of possible payoffs associated with the 
technologies of interest. In this way PSA will present the realization of the uncertainty 
that exists in the analysis as characterized by the probability distributions.

To run the PSA appropriately, evidence-informed distributions should be placed 
around all uncertain model parameters while any excluded parameters must be justified. 
The distributional assumption for each variable should reflect the nature of the variable; 
i.e. it should be consistent with any logical bounds on parameter values given its nature 
(e.g. utility scores with upper bound of 1, costs >= 0). When correlation between variables 
is expected, joint distributions should be used and independence should not be assumed 
(Andronis, Barton et al. 2009). There are often rules defined in methodological guidelines 
on choosing the appropriate distributions for different types of parameters. Appealing to 
the Central Limit Theorem, an appropriate distribution for any parameter includes the 
normal distribution, but given constraints on logical bounds for certain parameters, other 
distributions may be a better choice.

The result of the PSA is most commonly scatter plotted on a so-called cost-effectiveness 
plane (see Figure 14). The plots on the plane present all the results for the outcomes of inte-
rest (usually incremental costs and incremental quality adjusted life years [QALYs]) with 
respect to the compared technologies. The scatter plotted results can also be summarized 
according to their relation to the willingness-to-pay threshold (e.g. how much the society 
is willing to pay for one additional QALY). This can be illustrated on the cost-effectiveness 
acceptability curve (CEAC) (Figure 14). The CEAC plots the probability that one treatment 
is cost-effective compared to another as a function of the willingness-to-pay threshold for 
one additional unit of efficacy (Berger, Bingefors et al. 2003). The CEAC is in many ways 
the most helpful expression of the relative cost-effectiveness comparison between compe-
ting treatments (Briggs, Weinstein et al. 2012). 
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FIGURE 14 COST-EFFECTIVENESS PLANE AND COST-EFFECTIVENESS ACCEPTABILITY CURVE FROM A 
COST-EFFECTIVENESS MODEL 

5.2.3 Application of DSA and PSA

DSA can give insight into the factors influencing the results and can also provide a face-va-
lidity check to assess what happens in case of changing inputs or assumptions. Where the 
direction and magnitude of change in outcome tied to the change in each model parameter 
are reasonable and justifiable, there is a good chance of having no systematic error in the 
model. Tornado diagrams and other tools help decision-makers be explicit with respect 
to the key drivers of uncertainty in the model and provide a simple way to summarize 
and depict the impacts of different variables underlying an analysis. It presents a useful 
tool to summarize and portray the uncertainty and provides an initial, semi-qualitative 
assessment of uncertainty. It provides a natural starting point for the investigation of 
uncertainty and provides a standard route through which some of the key drivers of the 
cost-effectiveness results should best be revealed. It is a useful tool to identify critical 
model parameters and as a matter of fact, it is inevitable and mandatory for the full ana-
lysis of cost-effectiveness models (Gray, Clarke et al. 2010). 

DSA is imperfect in several ways, however. It can only represent the impact of change 
in certain predetermined directions. Reality is typically more complex: many different 
combinations of variables may be possible and variables may be associated with each 
other. By its nature DSA has the potential to ignore (one-way) or exaggerate (extreme 
scenarios) the interaction between parameters, and provide results which are easy to mis- 
interpret. Especially for the case of a multi-way sensitivity analysis, the mix of parameters 
to vary in combination and their possible relation can become complicated (Gray, Clarke 
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et al. 2010). As the choice of variables is dependent on arbitrary decisions (e.g. on choosing 
which variables to vary and in what range) DSA can become heavily sensitive to the di- 
scretion of the analyst. There is often a possibility that DSA becomes a tool providing esti-
mates unrepresentative of the true uncertainty (i.e. over- or underestimate uncertainty), 
rather than providing a useful indication on the likelihood of model results. 

Some limitations of DSAs, especially their limited ability to show joint parameter 
uncertainty and interactions between parameters, can theoretically be overcome by con-
ducting a probabilistic sensitivity analysis. If the distribution around and the correlation 
between parameters is correctly specified, the PSA will provide a more precise estimation 
of mean costs and effects (Groot Koerkamp, Weinstein et al. 2010). Concerns expressed 
about PSA relate mostly to practice. Assumptions on the inter-dependence of parameters 
are rarely made and the choice of parameter distribution can sometimes be inappropri-
ate. Once the analyst has to choose distributions and related parameters in an arbitrary 
fashion (e.g. due to the lack of data) many limitations of DSA will still hold true for PSAs, 
too. Hence PSAs are most helpful when the distribution and correlation of parameters are 
well-specified. 

5.3  Value of information analysis
Decision-makers, with the authority to delay decisions or revisit them later, are interested 
not only in the expected outcomes and the uncertainty around the results, but also in the 
value of carrying out additional research. The results of the PSA help determine the value 
of acquiring additional information for future research by conducting the so-called value 
of information (VOI) analysis. 

The idea of VOI is that information that emerges after the point of decision may have 
influence on changing the conclusion of the analysis (Griffin, Claxton et al. 2011). Such 
additional information can be drawn from future quantitative research – e.g. randomized 
controlled trials, observational studies. Due to additional information from new studies, 
parameter uncertainty is reduced and reimbursement of suboptimal interventions may be 
avoided, thus social welfare increases (Briggs, Claxton et al. 2006). 

 A VOI analysis relies on the assumption that at the time of the analysis we make the 
decision based on our current estimate of expected benefit. If our decision based on cur-
rent information turns out to be wrong there will be costs in terms of health benefit and 
resources forgone. The expected cost of uncertainty is determined jointly by the probabi-
lity that a decision based on existing information will be wrong and the consequences of 
a wrong decision (Briggs, Claxton et al. 2006). With estimates on the probability of error 
and the opportunity cost of error we can calculate the expected cost of uncertainty or the 
expected opportunity loss surrounding the decisions. The expected cost of uncertainty can 
be interpreted as the expected value of perfect information (EVPI), as perfect information 
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would eliminate the possibility of making the wrong decision. So, EVPI is the expected 
opportunity loss that could be avoided with perfect rather than current information. It can 
be simply estimated at any given willingness-to-pay threshold value for a unit of effec-
tiveness, given the probability distribution of net benefit for the intervention (Eckermann, 
Karnon et al. 2010). In other words, EVPI is the difference between the payoff (costs vs. 
benefits) with perfect and current information. Further discussion and numerical illustra-
tion of the problem is provided at Briggs, Claxton et al. (2006).

The example on Figure 15 shows the relationship between the willingness-to-pay thresh- 
olds and the expected value of perfect information. If the EVPI (per person) exceeds the 
expected costs of additional research, then it is potentially cost-effective to conduct furt-
her research. For example, if additional research is expected to cost 1,500 pounds, then 
additional research will be potentially cost-effective when the threshold is greater than 
40,000 pounds per QALY (Figure 15). So, it makes sense to reduce uncertainty for the price 
of 1,500 pounds/person13. At lower values of the threshold, e.g. 30,000 pounds per QALY, 
further research to reduce uncertainty should only be conducted if it does not cost more 
than 1,000 pounds (EVPI < 1,000 pounds/person). 

FIGURE 15. RELATIONSHIP BETWEEN A COST-EFFECTIVENESS ACCEPTABILITY CURVE AND THE EVPI FOR 
ONE PERSON

As Briggs and Claxton et al. (2006) argue, the relationship between the EVPI and the 
cost-effectiveness threshold (shown on in Figure 15) has an intuitive interpretation. When 

13 It is important that EVPI is also expressed for the total population of patients who stand to benefit 
from additional information over the expected lifetime of the technology. Hence to get the precise 
estimate of the total value of expected research per person, EVPI should be multiplied by the number 
of people affected by the treatment. This is called the population EVPI. 
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the threshold of CE is low, the technology is not expected to be cost-effective and addi-
tional information is unlikely to change that decision (EVPI is low). Thus any current 
evidence can be regarded as sufficient to support the decision to reject the technology. In 
this segment of the analysis (low threshold) the EVPI increases with the threshold because 
the decision uncertainty (probability of error) increases and the consequences of decision 
error (opportunity loss) are valued more highly. Conversely, when the threshold is hig-
her than the incremental CE ratio (probability of cost-effectiveness is beyond 50%), the 
intervention is expected to be CE and this decision is less likely to be changed by further 
research as the threshold is increased. The decision uncertainty falls again because the 
technology appears to be increasingly cost-effective as the threshold is increased (probabi-
lity of error falls, tending to reduce the EVPI). 

In this example the reduction in decision uncertainty (threshold beyond app. 58,000) 
offsets the increased value of the consequences of error (EVPI). The EVPI reaches a maxi-
mum when the threshold is equal to the expected incremental cost-effectiveness ratio of 
this technology. In other words, the EVPI for this case reaches a maximum when we are 
most uncertain about whether to adopt or reject the technology based on existing evi-
dence. 

The wider application of EVPI analysis is currently under development (e.g. for resource 
allocation purposes) and is expected to become more widespread along with the standar-
dized use of probabilistic sensitivity analyses (see in section 5.2.2) for economic evalua-
tions. For a discussion on the relationship across certain derived measures of uncertainty, 
including VOI measures, see Campbell et al. (2015). 
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Balázs Nagy, László Szilberhorn and Anett Molnár

Validation, as discussed in section 4.2, is a key and integral part of the model development 
process. It demonstrates and evaluates whether the model is a proper and sufficient repre-
sentation of the system under assessment and whether the results of the analysis can serve 
as a solid basis for decision-making (Vemer, Ramos et al. 2016). The results of the valida-
tion determine whether the model can be used by decision-makers to draw conclusions. 
On the other hand, validation is not about transparency. Transparency can help readers 
understand what a model does and how it does it, while validation determines how well 
the model serves the particular decision (Eddy, Hollingworth et al. 2012). The literature 
on validation in healthcare decision-modeling is rather immature, and the development 
of methodologies for validation (including quality assurance) is not fully elaborated. So 
far the focus has been on both the hard numbers and the softer processes of model devel-
opment and problem structuring (Brennan and Akehurst 2000, Vemer, Ramos et al. 2016); 
theoretical and practical rules of thumb have equally been explored. 

6.1  Common methodological flaws 
Irrespective of the preparedness of the developer healthcare decision models may suffer 
from various types of flaws. Some of these might be related to computational errors, others 
might be due to inappropriate use of data, misinterpretation of real-world phenomena, or 
inappropriate choices about the methodology. Models always have potential to (adopted 
from Drummond and Schulpher [2005]):

−	 inadequately translate clinical data to economically justifiable data,
−	 inappropriately extrapolate beyond the observed period,
−	 choose wrong comparators,
−	 omit important costs or benefits,
−	 use assumptions excessively rather than using data,
−	 inadequately characterize uncertainty,
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−	 show problems in the aggregation of results,
−	 selectively report on findings. 

It is important for analysts and users to know how to detect these flaws. However, seeking 
the perfect model is not necessarily optimal. Most, if not all, reimbursement decisions are 
made at a time when full information is not available. Therefore the appropriate way to 
judge economic evaluations is not whether they embody some ultimate “truth,” but wheth- 
er they lead to a better decision than would have been made in their absence (Drummond 
and Sculpher 2005).

6.2  Types of validity
The extent to which a model is good – i.e. represents the reality it intends to describe – can 
be discussed by using the validity terms as follows (based on Eddy, Hollingworth et al. 2012). 

Face validity is the extent to which a model, its assumptions, and applications corres-
pond to current science and evidence, as judged by people who have expertise in the area. 
Four aspects are particularly in focus with face validity: 

−	 model structure, 
−	 data sources, 
−	 problem formulation, and 
−	 results. 

In practice face validity is tested by people who have clinical or other health-related exper-
tise to evaluate how well each component reflects their understanding of the pertinent 
medical science, available evidence, and practice. Consequently face validity is subjective 
in the sense that it reflects a qualitative analysis of selected experts and their judgement 
based on their understanding on the model and reality. It is still regarded as a crucial part 
of model building and inevitable for the acceptance of the final model. 

Internal validity (also referred to as internal consistency, and technical validity) 
examines the extent to which the mathematical calculations are performed correctly and 
are consistent with the model’s specifications. There are two main steps to check internal 
validity: i) verifying the individual equations and ii) checking their accurate translation 
to codes or formulae. Equations and parameters should be validated against their sources. 
Coding accuracy should be checked by using state-of-the-art quality assurance (see in 
section 6.4) and control methods for software engineering. These methods strongly depend 
on model complexity.
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Cross-validity is checked when a model is compared with other models to determine 
the extent to which the models calculate similar results. These methods14 examine diffe-
rent models that address the same problem and compare their results where any differen-
ces among results and underlying causes are examined. 

External validity is checked when a model is used to simulate a real scenario, such 
as a clinical trial or an observational study, and the predicted model outcomes are com-
pared with the real-world outcomes.  Model results are compared with actual event data, 
frequency of clinical outcomes or other measures. It also involves simulating events that 
have occurred, such as those in a clinical trial, and examining how well the results corres-
pond.15 External validation applies to the model as a whole or to some components, such as 
population creation, disease incidence, disease progression, care processes and behaviors, 
occurrence of clinical outcomes, as well as interventions and their effects. 

Predictive validity involves using a model to forecast events and, after some time, 
comparing the forecasted outcomes with the actual ones. Validation often involves recog-
nizing a study design, simulating that design, recording the predicted outcomes, waiting 
for events to unfold, and comparing them with predictions. This process is frequent in the 
case of clinical trials that have published their designs, but not yet reported results; it can 
also be applied to cohort studies still in progress. 

6.3  Phases of model validation
While validation can be identified in the sequence of model development (see section 4.2) 
it has a distinct relation to all phases, too (see Figure 16). Different types of validation tech-
niques can be linked to each phase of the model development (Sargent 2005):  

1 .. Conceptual model validation determines that the theories and assumptions 
underlying the conceptual model are correct and that the model’s structure, logic, 
mathematical and causal relationships are reasonable. 

2. Computerized model verification assures that the computer programming and 
implementation of the model concept is correct. It entails techniques which ensure 
that the implemented software program including code, mathematical calculations 
and implementation of the model concept are performed correctly and are consis-
tent with the model’s specifications.

3. Data validation encompasses techniques used to determine whether the available 
input data is appropriate, accurate and sufficient and that data transformations 

14 These methods are also called external consistency, comparative modeling, external convergence 
testing, convergent validity, external consistency and model corroboration.

15 For multi-application models external validations can be applied to the model in a general sense and 
to each application. It is important to perform multiple validations that crisscross the intended appli-
cations in the sense of involving a range of populations, interventions, outcomes, and time horizons.
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were correctly performed. This process ensures that the data necessary for model 
building, model evaluation and testing and conducting the model experiments to 
solve the problem are adequate and correct.

4. Operational validation determines that the model outputs have sufficient accu-
racy for the model’s intended purpose over the domain of the model’s intended 
applicability. It practically validates the real life case against a specific model appli-
cation and implementation.

FIGURE 16 VALIDATION TECHNIQUES AND THE PHASES OF MODEL DEVELOPMENT

Note: phases of model development were originally detailed on Figure 12

Although not presented in Figure 16, the validation tasks strongly overlap and are often 
repeated until the model itself reaches a satisfactory level of quality and acceptability. 
Usually dozens of model versions are developed prior to obtaining the valid model.

Validation types are usually conducted in the context of specific applications. A model 
can have different levels of validity for different applications and the validation may apply 
to particular applications, not to the model itself. 

The required degree of validity depends on the research context: e.g. predicting 30-year 
versus 6-month survival probabilities for oncology therapies requires very different levels 
of accuracy. Consequently, it is difficult to specify criteria a model must meet to be de- 
clared “valid,” as if validity were a property of the model that applies to all its applications 
(Eddy, Hollingworth et al. 2012). 
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No matter how many validations are done, there will inevitably be uncertainty about 
some aspects of a model. A sensitivity analysis can be used to explore how a model’s 
results change with variation to inputs; but on its own, it will not evaluate how accurately 
a model simulates what occurs in reality so it cannot substitute for validation. 

Table 5 in Appendix VI. gives a comprehensive overview of the relationship between 
phases of model development, validation techniques and the type of validity which the 
modeler should check. 

6.4  Tools of model validation 
Plenty of validation tools are available in the public domain to help model developers 
and users to test and confirm their findings. The latest review by Vermer and colleagues 
(2016) reported 31 checklists in practice, all of which are potentially helpful for different 
purposes. The applicability of validation tools depends on the context, time and resources 
available, and also on the significance of the decision to be made. 

Currently there is no predefined set of tools or methods which will confirm that a 
health economic decision model is valid. Choices for the modeler and the user are strongly 
driven by a series of individual decisions throughout the model building and implemen-
tation process. 

Validation along the model development process is presented by the checklist devel-
oped by the authors of this book. This guide sets up links between model building activi-
ties and phases of validation for various types of modelling exercises. As seen in Appendix 
VI. the process and tasks become fairly technical and detailed once it comes to real-life 
practice. Also types of models, their level of difficulty and time constraints may lead to 
different sets of activities. 

An example on technical validation is also provided in Appendix V. This checklist 
presents tasks which are useful for modelers and skilled users to test if the model calcu-
lations are correct (model verification). Again it is the discretion and responsibility of the 
modeler/user to carry out the suggested types of activities to an extent which is deemed 
necessary. It is also important to document the validation process, which endorses the 
transparency and the replicability of the model. 
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Based on the study of Brennan et al. (2006) this section describes Table 1 (presented in 
section 2.2) in detail. 

Deterministic decision trees (A1) are widely used aggregate level models for health-
care decision analyses. They outline the structure of decision problems, the probability or 
fraction of various outcomes of the decisions and the valuation of their outcomes (by using 
e.g. quality-of-life, cost or net benefit measures). The mean value of a decision is computed 
by summing the probability of each outcome multiplied by its value (see more in section 
3.1). Stochastic cohort models (column B) assume randomness. The simulated decision tree 
cohort (B1) provides an alternative approach to the deterministic decision tree: it simulates 
the number of individuals on each path of a decision tree (but not each individual) sepa- 
rately to get an idea of the variability around the mean results. Markov models for cohorts 
can be processed either analytically (A2) with expected values or with simulated random 
Markov model transitions (B2) – the same way as simulated decision tree cohorts. The 
advantage of the stochastic approach is, similarly to B1, that it can provide a measure of 
the variability of the number of individuals likely to be in each state of the cohort. 

Individual level models (ISM) (columns C, D) simulate the progression of each individual 
with different characteristics. Rather than tracking data for every pathway (as cohort models 
do), ISMs track specific individuals and generate large numbers of simulated patient histories to 
evaluate results (see more in sections 3.4 and 3.5). Simulated Patient Level Decision Tree models 
(CD1) take individuals through a tree’s different pathways and make a record of the patients’ 
(disease/treatment) history. Similarly, individual Markov simulation models take individu-
als with certain characteristics through model states in each time period (CD2). By tracking 
multiple co-morbidities or other attributes, they are able to depict complex diseases/situations. 
Examples include models of diabetes where patient co-morbidities interact and affect the out-
comes, and other models on rheumatoid arthritis and osteoporosis (see more in section 3.4).

Amongst models allowing interactions between individuals, system dynamic models 
(A3, A4) are of great importance in public health, epidemiology and operational research. 
However, they are less frequently used for economic evaluation in healthcare. With the 
system dynamics approach the state of the system is modelled in terms of changes over 
time. The underlying philosophy is that if individuals do interact, by using this approach, 
a cohort based model can still be sufficient; it is not necessary to model each indivi-
dual separately. These models assume that the rate of change in the system is a func-
tion of the system’s state itself (i.e. feedback). Feedback loops are closed circles of causal 
relationships that work to amplify or resist changes introduced into systems. They have a 
critical impact on the behavior of complex systems. Typical examples of feedback include 
infectious disease outcomes, where higher levels of infection produce higher risks of fur-

Appendix i
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ther infection, or healthcare service constraints, where the system performs differently 
when it is full or over-capacity. Typical applications of dynamic models are concerned 
with community care, short-term psychiatric care, HIV/AIDS (Dangerfield 1999), smallpox 
preparedness, Creutzfeldt–Jakob disease (Bennett, Hare et al. 2005).

The system dynamics models are based on two important assumptions: i) the change 
dynamics are set deterministic and ii) fractions of individuals can occur in specific health 
states (i.e. an infinitely divisible population assumption). However, these assumptions are 
only feasible when large populations are analyzed. To address the variability of the sys-
tem dynamics and the need to model integer numbers of individuals in each health state, 
continuous time Markov chain (CTMC, B4) models can be applied. A CTMC can jointly 
model many interactions including, for example, infectious disease dynamics and limited 
healthcare resources. These models are often analyzed stochastically to describe how the 
state changes through time. The number of individuals in each state is tracked, and each 
individual event must be processed, but there is no need to sample the identities of indivi-
dual patients to maintain their histories. The discrete time Markov chain (DTMC) model 
(B3) is like the CTMC except that it is updated with finite time steps. 

Individual level models with interactions allow even more flexibility and heteroge-
neity. Individual level Markov models (C3, C4) with interactions can be thought of as an 
extension of Markov cohort models with interaction (B3, B4). Individual level means that 
patient characteristics may be heterogeneous, and that histories may be tracked for each 
individual in the population. These are also called individual event history (IEH) models. 
In continuous time IEH models (C4) the parameters and rates may differ for each indivi-
dual to reflect heterogeneous population characteristics, and rates may also depend upon 
resource constraints (as a result of taking into account interactions between individuals).  
The analogous discrete time IEH model (C3) steps forward in discrete time intervals in the 
same way as the DTMC model (see previous paragraph). 

Models with non-Markovian properties (column D) allow greater flexibility in model-
ling the timing of health-related events (i.e. the time is not constrained by fixed model 
cycles). Complex individual level models (e.g. D4) can examine interactions both with 
other individuals and with the environment, including the availability of resources (e.g. 
doctors, beds, surgery room, transplant organs). Probably the most flexible of all model-
ling techniques is continuous time discrete event simulation (CT, DES) (D4). It describes 
the progress of individuals (entities), which undergo various processes (events) that affect 
their characteristics and outcomes (attributes) over time. In these models the line structure 
(e.g. considering the event of other individuals when lining up for a surgical intervention) 
enables interaction to take place with constraints and between entities. For DES models 
the state of the modelled system includes the current entities, their attributes, and a list of 
events that can occur either at the current simulation time or that are scheduled to occur 
in the future (see more in section 3.5). Continuous time DES models have discrete-time 
analogues (D3) that are not different in any significant methodological way from the con-
tinuous time models if the discrete time steps are small enough.
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Key: V: Vaccine status; VC: Vaccination coverage; WN: Waning of natural immunity; Wv: Vaccine waning. 

Source: Millier et al. (2012)

FIGURE 17 FOUR MODELS TO ANALYZE THE COST-EFFECTIVENESS OF PERTUSSIS IMMUNIZATION STRATEGIES: A) DECISION TREE MODEL, 
B) MARKOV MODEL, C) DES MODEL, D) DYNAMIC MODEL.
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Source: based on Nagy et al. (2016)

FIGURE 18 MARKOV TREE TO DESCRIBE THE STRUCTURE OF A MARKOV MODEL 
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Source: Nagy et al. (2016) 

FIGURE 19 STRUCTURE OF THE SYREON TYPE 2 DIABETES MODEL
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Source: Nagy et al. (2017)

FIGURE 20 STRUCTURE OF THE LONG-TERM ECONOMIC MODEL OF ATTENTION-DEFICIT HYPERACTIVITY DISORDER
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Appendix V 

Technical validation checklist for decision analytic 
models
Source: Syreon Research Institute, Modeling Division, 2017
This series of analyses help check the technical correctness of decision analytic models 
(mainly built in Excel). Not all tests are applicable for each model, hence the use of all tests 
is not expected. 

TABLE 5

ICER Expected effect Effects on  the model, 
explanation

Decision 
(OK / NO)

Default value

General input 
settings

Set costs discount rate to 0% Same costs as undiscounted 
rate Ok

Set benefits discount rate 
to 0%

Same benefits as undiscounted 
rate Ok

Check both arms’ sums 
to cohort size plus deaths 
each year

Should sum to cohort size* if 
applicable Ok

Check the numbers of 
patients in each of the 
health states are the same 
for each treatment

NA

Set all efficacies / hazard 
ratios/ withdrawal rates/ 
mortality/ RR etc. to the 
same figure (0 and/or 1)

0
Same number of QALYS 
for both arms AND/OR all 
incremental QALYs = 0 / 1

Setting market share 
of INF to almost 100%, 
CDX +ve response to 
100% and Multiplier for 
increased efficacy to 1 
gave the same QALYs 
and costs

Ok

This test 
demonstrates 
that all 
patients alive 
are being 
counted in the 
LYG and QALY 
calculations 
& that QALYs 
calculations 
are correct.

Set discount rate for utilities 
to zero. Set all utilities 
for states to 0 and utility 
decrement vales to 0 and set 
mortality to 0.

Total QALY = 0

Set AE disutility =0
Set utility intercept and 
all factors = 0 
Set mortality = 0
Discount rate= 0 (result 
0 QALYs)

Ok

Without changing the 
previous settings change 
utilities for states to 1

Total QALY = model time 
horizon

Then changed intercept 
to 1 (result 10 QALYs) Ok

Appendix v
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ICER Expected effect Effects on  the model, 
explanation

Decision 
(OK / NO)

This test 
demonstrates 
that 
differences 
in patient’s 
numbers in 
each of the 
health states 
between 
treatments 
are due to 
differences in 
progression 
free and/
or overall 
survival.

Set each of the cost 
parameters to 0 Total cost is zero Ok

Check that the total costs 
for both treatment arms are 
0 for every year

Costs both arms =0
QALYs give values for both 
arms

Ok

Check that the total cost 
(in the results table) is 0 for 
both treatment arms

Ok

Transitional 
probabilities

Check transition matrices 
e.g. setting same values in 
the matrices for both arms

The comparator arm is 
not similar in structure to 
the new treatment arm

No

Check sum of rows in each 
transition matrix All rows should sum to 1 NA

This test 
ensures costs 
calculations 
are correct

Are all health states 
accounted for regarding 
costs?

Ok

Are costs adjusted to cycle 
length? Ok

Benefits
Are all health states 
accounted for? Ok

Are benefits adjusted to 
cycle length Ok

This test 
demonstrates 
that the two 
treatment 
arms have the 
same logic and 
calculations, 
and hence will 
come to the 
same results 
with the same 
data

Ensure that all values in 
every cell of ‘Data entry’ 
and ‘Parameter’ sheets 
are identical, using a 
comparison sheet.

ICER = #DIV/0 
Total cost =
Total QALY =

NA

Ensure differences in 
totals in ‘Data entry’ and 
‘Parameter’ sheets are zero

In case where data entry 
sheet is not used directly for 
calculations

Ok

Ensure all in differences in 
CE calculations are zero, and 
CE ratios are n/a
Set all PFS/OS γ and λ values 
to equal for both arms Not applicable in all models NA

This test 
ensures that 
patients 
are neither 
entering nor 
leaving the 
model – only 
changing from 
one state to 
another.

Check sum of all health 
states =100% at all times Ok
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ICER Expected effect Effects on  the model, 
explanation

Decision 
(OK / NO)

Further 
testing can 
be conducted 
using a range 
of extreme 
parameter 
values, and 
the structure, 
cell formulae 
and visual 
basic code was 
examined for 
programming 
errors.

Check that the sum of each 
year’s patient flow (in both 
arms) sum to 100%

Ok

Checking 
terminal states

Check that the number of 
patients in terminal states 
is not less than it was in the 
previous cycles

Ok

Checking 
Discounting 
Formulas for 
Costs and 
Benefits

=1/(1+Discount rate)^(t-1) Ok

Effective rate for period = 
(1 + annual rate)^(1 / # of 
periods) – 1

NA

Inputs Are values from input sheet 
used in calculations?

It may be direct or indirect, but 
there must be a link between 
each single cell in input sheet 
and model engine – check the 
VBA code if necessary

Ok

Results

Costs are referenced to the 
correct cell

Reference cells are consistent 
with the model length, and are 
referencing to the same cycle, 
or same logic – check the VBA 
code if necessary

Ok

QALYs are referenced to the 
correct cell

Ok

Adherence
Applied to Costs? It should be the same for Costs 

and Benefits
Ok

Applied to Benefits? Ok

VBA

Check if the model uses 
VBA code and examine the 
calculations which are done 
in VBA.

NA

Appendix v
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ICER Expected effect Effects on  the model, 
explanation

Decision 
(OK / NO)

PSA

Apply Syreon PSA 
Template with same 
variables included in the 
original model and same 
distributions chosen

Results should be nearly 
identical

Originally developed 
using Syreon PSA 
template.

NA

Set all inputs that affect 
utilities not to be included 
in PSA.

PSA plot should be a line 
parallel to the cost axis (Y axis 
most probably)

NA

After the previous step, start 
switching on the variable 
groups one by one.

PSA plot should look healthy 
otherwise the recently 
switched on variable group is 
causing a problem.

NA

Set all inputs that affect 
costs not to be included 
in PSA

PSA plot should be a line 
parallel to the QALYs axis (X 
axis most probably)

NA

After the previous step, start 
switching on the variable 
groups one by one.

PSA plot should look healthy 
otherwise the recently 
switched on variable group is 
causing a problem.

NA

DSA

Set upper multiplier to be 5 
times the lower multiplier

Results for decreasing value 
should be negligible compared 
to increasing it

Ok

Set lower multiplier to be 5 
times the upper multiplier Opposite Ok
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There are many high-quality health economic evaluation books and manuscripts. 
The objective of this book was not to be yet another health economic evaluation 
text. This book fills a void missing within alternative resources. The primary objec-
tive of its publication is to support eager learners and model building practitioners 
seeking a pragmatic and concise roadmap for how to choose wisely related to the 
many important decisions within health economic evaluation modelling. 
This book begins with a practical review of decision analytic modelling techniques 
supporting economic evaluations in health care. After bringing learners and future 
and current model builders to an equal playing field, this book’s essence relates to 
how it supports the reader in choosing a model type that fits the research ques-
tion; in walking the reader through pragmatic step-by-step instructions for model 
building; in concisely addressing the advanced topic of uncertainty; and in provid-
ing checklists related to model validation and quality assurance.  

Modelling, done well, is a rigorous, systematic, scientific exercise that transpar-
ently addresses research questions while simultaneously generating additional 
hypotheses. 
The editors and authors combined scientific knowledge with many years of 
modelling experience to share the book’s essence with readers who are interest-
ed in learning and working in this growing field. 
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