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Chapter 1. Introduction

Working with Geographic Information Systems (GIS), geo-reference is a methodology to
 give the coordinates of all objects of the system and
* define the coordinate system of these coordinates.

Naturally, as the coordinate systems can be of several kinds, the transformation methods between these coordinates
are also a part of this field. The objects can be of vector or raster types; in the first case, the coordinates of the
vertices should be given. Working with raster datasets, the coordinates of every pixel should be defined.

Fig. 1. The map of Hungary of Goetz & Probst from 1804 as a Google Earth layer: integration of completely dif-
ferent data technologies by the geo-reference.

The first sentence of the above paragraph is very similar to the basic exercise of the surveying. However, the GIS
application supposes that the field survey has been completed, so the geo-reference is — with a very few exceptions
— mostly office, computer-aided work. Besides, as it will be detailed later, the accuracy claims are often different
— less — than the needs in the classical geodesy. Perhaps this is the reason, why the developing of these methods
handled less important by the geodesists, albeit the methods are well known for them. However, in the GIS, the
coordinate handling and conversion methods are highly needed, even if their accuracy is around one meter or even
a few meters. Therefore these methods are less introduced in the literature.

The geo-reference is a crucial part of the GIS: it is the key of the uniform handling of many different input data;
the key of the spatial data integration (Fig. 1). Every GIS user has already faced this problem, if his data was not
in just one spatial coordinate system. I hope this book can be helpful in solving these problems correctly and exercises
with the desired accuracy.

It is necessary to give here, in the introduction, the definition of the accuracy in the geo-information. It is a relative
subject; in the everyday GPS practice it is mostly the one meter-few meters error, that is an acceptable level. While
we work with scanned maps, it should be known that during the map making and printing process, the post-printing
drying and the final scanning, the best accuracy could be around half a millimeter in the map. That’s why, in this
case, the aimed accuracy of the applied methods is a function of the scale of the scanned map: at 1:10000 scale, it
is 5 meters while if the map has a scale of 1:50000, it is enough to apply methods with an accuracy limit of 25
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Introduction

meters. In most cases, it is not only unnecessary to apply better methods as they are less cost-effective: the input
data are burdened by higher errors than our precious method is optimized for.
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Chapter 2. Planar and spatial
coordinate systems

2.1 Units used in geodetic coordinate systems

It is an old tradition that in our maps the angles can be read in the degree-minute-second system. The whole circle
is 360 degrees, a degree can be divided into 60 minutes, a minute can be further divide into 60 seconds, so a degree
consists of 3600 seconds.

Along the meridians, the physical distances connected to the angular units — supposing the Earth as a sphere — are
practically equal. Along a meridian, and using the first definition of the meter, one degree distance is 40,000 km
/360 degrees = 111.111 kilometers. One second along the meridian is a 3600th part of this distance, 30.86 meters;
this is the distance between two parallels, one second from each other. Along the parallels, the similar distance is
also a function of the latitude and the above figures should be divided (in case of spherical Earth) by the cosine of
the latitude. At the latitude of Budapest (latitude: 47.5 degrees), a longitudinal degree is 75,208 meters, a longitud-
inal second is 20.89 meters.

However, the degree-minute-second system is not the exclusive one. In the maps of France and the former French
colonies, e.g. of Lebanon, the system of new degrees (gons or grads) is often used (Fig. 2). A full circle is 400 new
degrees. One new degree consists of 100 new minutes or 10,000 new seconds.

In many cases, the GIS software packages ask some projection parameters or other coordinates in radians. Radian
is also the default angular unit of the Microsoft Excel software. The full circle is, by definition, 2x radians, so one
radian is approximately 57.3 degrees and one radian is 206264.806 arc seconds (this is the so called ).
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Planar and spatial coordinate systems

Fig. 2. In the map of Leban, a former French colony, the latitudes and longitudes are given in degrees (internal
frame) and also in grads (indicated by "G’ in the external frame).

The standard international length unit is the meter. In the history, it had three different definitions. After the first
one, both newer descriptions made it more accurate, keeping the former measurements practically untouched. First,
the meter was introduced as the one ten millionth part of the meridian length between the pole and the equator. As
this definition was far too abstract for everyday use, later a metric etalon was produced and stored in France as the
physical representation of the unit. The countries have replicas of it and maintain their own national systems to
calibrate all local replicas to the national ones. Nowadays, the new definition of the unit is based on quantum-
physical constants that are as far from the everyday use as the first definition is. However, as it is calibrated exactly
in the GPS system, it is more and more a part of our everyday life.

Using the replica system was not without side effects. During 1870s, in the newly conquered Alsace and Lorraine,
the Germans connected the geodetic networks of Prussia and France. The fitting of the two systems showed an
error around ten meters. Later it occurred, that French and Prussian networks was constructed using different meter
replicas as scale etalons at the baselines. The length of the German metric etalon (brought also in Paris) was longer
by 13.55 microns than the original French one. This makes no problem in the most cases, but in long distances, it
counts: in a distance of several hundred kilometers, the error of ten meters occurs easily. The length of the German
replica was later the definition of the "legal meter’, which is 1.00001355 ’international’ meters. There is an ellipsoid
(see point 3.2), called *Bessel-1841-Namibia, used for the German survey of southwestern Africa (Namibia); its
semi-major axis is the one of the Bessel-1841 ellipsoid multiplied by this counting number between the meter and
the legal meter. Thus, the legal meter is also known as "Namibia-meter’.
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Planar and spatial coordinate systems

In the Anglo-Saxon cartography, different length units are also used. In the former Austro-Hungarian Monarchy,
the basic unit was the ’Viennese fathom’ (Wiener Klafter). Table 1 shows the length of these units in meters.

Lenght unit In meters

Legal meter 1.0000135965
Viennese fathom 1.89648384
Viennese mile 7585.93536
Toise 1.94906
Imperial foot 0.3047972619
US Survey foot 0.30480060966
Sazhen (Russian fathom)|2.1336
Russian Verst 1066.78

Table 1. Historical and imperial/US units in meters.

2.2 Prime meridians

There is a natural origin in the latitudes: the position of the rotation axis of the Earth provides the natural zero to
start counting the latitudes from: the equator. However, in case of the longitudes, the cylindrical symmetry of the
system does not offer a similar natural starting meridian therefore we have to define one.

The meridian of the fundamental point of a triangulation network (see Point 3.3) is usually selected as zero or
prime meridian. Ellipsoidal longitudes of all points in the network are given according to this value. If we’d have
just one system, it could work well. As we have several different networks and different prime meridians, we need
to know the angular differences between them. Instead of handling the differences between all prime meridian
pairs, it is worth to choose just one, and all of the others can be described by the longitude difference between it
and the chosen meridian.
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Planar and spatial coordinate systems

INTERNATIONAL CONFERENCE

HELD AT WASHINGTOIT

FOR THE FURF OSE OF FIXING

A PRIME MERIDIAN

AND

A UNIVERSAL DAY.

OCTOBER, 1884.

PROTOCOLS OF THE PROCEEDINGS.

WASHINGTON, D. C.
GIBSON BROS., PRINTERS AND B OOKBINDERS.
1884,

Fig. 3. The cover page of the protocol of the 1884 Washington conference that decided to use Greenwich as the
international prime meridian.

The use the Greenwich prime meridian was proposed by the 1884 Washington Conference on the Prime Meridian
and the Universal Day (Fig. 3). It was accepted by 22 votes, while Haiti (that time: Santo Domingo) voted against,
France and Brazil abstained. France adapted officially the Greenwich prime meridian only in 1911, and even
nowadays, in many French maps, we can find longitude references from Paris and in new degrees. It is interesting
that the question of the international prime meridian was discussed in that time: the newly invented telegraph enabled
to accomplish the really simultaneous astronomical observations at distant observatories. Table 2 shows the longitude
difference between Greenwich and some other important meridians that were used as local or regional zero meridians.
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Planar and spatial coordinate systems

Prime meridian Longitude from Greenwich
Paris 2°20’ 14,025~

Rome 12°27’ 8,04”

Madrid —3°41° 16,48”

Oslo 10°43° 22,57

Pulkovo 30° 19” 42,09~

Ferro' ~17° 40’

Ferro® ~17°39° 46,02”

Ferro® ~17° 39" 45,975”

Vienna, Stephansdom4 34° 02’ 15” (from Ferro)
Vienna, Stephansdom5 16° 22° 29~

Budapest, Gellérthegy6 36° 42’ 51,57” (from Ferro)
Budapest, Gellérthegy7 36° 42’ 53,5733” (from Ferro)
Budapest, Gellérthegy8 19° 03° 07,5533”

Table 2. Longitude values of some prime meridians. Used in Germany, Austria and Czechoslovakia. The’ Albrecht
difference’, used in Hungary, Yugoslavia and in the Habsburg Empire. 3According to the Bureau International de
I’Heure. *From Ferro, in the system 1806. 5 Applying the Albrecht difference. ®From Ferro, according to the 1821
triangulation. "From Ferro, according to the system1909. $The 1909 value, applying the Albrecht difference.
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Planar and spatial coordinate systems
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Fig. 4., Ostlich von Ferro” = East of Ferro: indication to the old Ferro prime meridian in a sheet of a Habsburg
military survey.

As we see in the Table 2, some prime meridians are described by more longitude differences from Greenwich. For
example, this is the situation of the Ferro meridian, which was widely, almost exclusively used in Central Europe
prior to the first part of the 20th century. Ferro (Fig. 4; nowadays it is called El Hierro) is the westernmost point
of the Canary Islands. The meridian fits to the margin of the ancient Old World’ (the one without the Americas;
Fig. 5). In fact, the longitude of Ferro refers to the Paris prime meridian. The longitude difference between Ferro
and Paris is, according to the French Bureau International de I’Heure (BIH), 20 degrees, in round numbers (Fig.
6). The Ferro prime meridian itself was proposed as a commonly used one also by a — mostly forgotten — ’interna-
tional conference’, brokered by the French Cardinal Richelieu in the 17th century.
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Planar and spatial coordinate systems
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Fig. 5. Ferro, now El Hierro, Canary Islands, in the Google Earth. As the Ferro prime meridian is cca. 17° 40’
west of Greenwich, it is quite surprising that Ferro is "west of Ferro’ indeed. This prime meridian was artificially
selected and not connected to the island at all.

About the given three different values of Ferro in Table 2: the value of the BIH refers to the exact 20 degree west
from Paris. The ’Albrech-difference’ between Ferro and Greenwich differs from that by about one meter. Later,
this difference was modified by Germany, and later by two successor states of the Monarchy. The cause was an
error in the longitude observation at the old observatory tower of Berlin; this error was 13,39 arc seconds. Adding
this value to the Albrecht-difference, it is 17° 39° 59.41”, which can be substituted by the round number of 17°
40’ with an error around 1.5 meters. So, this figure was used in Germany, Austria and Czechoslovakia, which enabled
to further use the sheet system of the topographic maps.
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Fig. 6. The 'Cassini meridian’ of the old Paris observatory. The Ferro prime meridian was indeed defined as a
meridian that is west of this line by 20 degrees in round numbers (Wikipedia).

At the Gellérthegy, the fundamental point of the old Hungarian networks, there are also several figures indicated:
similarly to the latitude, the coordinates of the point are the functions of the (different) geodetic datum(s).

We can find maps, e.g. in Spain and Norway, at which the Greenwich prime meridian used, but their sheet system,
remained to connected to the old, in this examples to the Madrid or Oslo meridians (Fig 7).

10
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Fig. 7. The sheet frames of the modern 1:50,000 map of Norway follows the old Oslo meridian, however the lon-
gitudes are give from Greenwich.

Prime meridians are also applied at mapping of celestial bodies. In case of the Mars, the prime meridian is defined
at the crater ’Airy-0’ (named after the former director and Royal Astronomer of Greenwich). At the moon, this
longitude is fixed at the Bruce Crater, in the middle of the visible part. Differently from the terrestrial coordinate
system, in the sky there is a unique prime meridian, which is a good one for the celestial system. The longitude of
the vernal equinox, the ascending node of the Sun’s apparent orbit, is a natural possibility. The only problem is
that the vernal equinox is slowly moves because of the luni-solar precession of the earth, so the celestial prime
meridian should be connected to an epoch of that.

Nowadays, our terrestrial coordinate systems are not connected to the physical location of the Greenwich Obser-
vatory anymore: they are derived from the celestial system (the ICRF, the International Celestial Coordinate Frame)
via the epoch of the vernal equinox and the Earth’s rotation parameters. That’s why in the WGS84 (see point 3.3)
used by the GPS units and also by the Google Earth, the longitude of the historical Airy meridian in Greenwich is
5.31 seconds west *from itself’, indeed from the new prime meridian (Fig. 8).

11
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Fig. 8. Surprisingly enough, the Airy meridian of the Greenwich observatory is ‘west of Greenwich’ by cca. 150
meters in the WGS84 datum of the Google Earth. The WGS84 is connected to the celestial reference system, not
to the traditional Greenwich meridian.

2.3 Coordinate systems and coordinate frames

To locate and place any object in the plane or in the space, to define their location are enabled by coordinate systems.
In the coordinate systems, or, in other words, the reference systems, the coordinates of the objects describe its
location exactly. The axes to the coordinate systems are linearly independent from each other. The system types
in the GIS practice:

* planar orthographic coordinate system (planar system)

* spatial orthographic coordinate system (or Cartesian system, after the Latin name of Descartes)
* spherical polar coordinate system (geocentric or spherical system)

« cellipsoidal (geodetic) coordinate system

The axes of the first two types are lines, perpendicular to each other in the plane or in the space, respectively. In
the last two cases, the coordinates are one distance (from the center, or more practically, from a defined surface)
and two directional angles, the longitude and the latitude. The coordinates are given in units described in Point
2.1.

Neither the coordinate systems nor the coordinates themselves are visible in the real world. That’s why the coordinate
systems are realized by physically discrete points and their fixed coordinates in a specific system. This physically
existing, observable point set, characterized by point coordinates is called reference frame. In fact, all geodetic
point networks are reference frames. Any reference frame is burdened by necessary errors, by theoretical or
measure ones, based on the technology of the creation of the frame. In case of the geodetic frames, the difference
between the Earth’s theoretical shape, the geoid, and its ellipsoidal approximation causes theoretical errors. Besides,
the limited measuring accuracy results further errors in the coordinate frame.

Longitude of a point is the same both in spherical (geocentric) and ellipsoidal (geodetic) systems. However, its
latitude is different, because of the altered definition of the angle of the latitude. In this version of the textbook, all
latitudes and longitudes are interpreted in ellipsoidal (geodetic) system.

12
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Chapter 3. Shape of the Earth and its
practical simplification

There are several approaches to define the shape of the Earth. In our study, we need one that is in a form of a
function. This function should give just one value to given spheric or ellipsoidal coordinates. This value can be a
length of a radius from the center to our point, or an elevation over a specific theoretical surface.

An obvious selection would be the border of the solid Earth and the hydrosphere with the atmosphere. However,
this approach immediately raises some problems of definition: should the ’solid’ vegetation be a part of the shape
of our planet? How could we handle the buildings or the floating icebergs?

Still, if we could solve these above problems, there still is another theoretical one: this definition does not result
an unambiguous function. In case of the caves or the over-bent slopes there are several altitude values connected
to a specific horizontal location. The shape of the border of the phases should be somewhat smoothed.

The field of the gravity force offers exactly these kinds of smoothed surfaces. The geoid (’Earth-like’) shape of
the Earth can be described by a specific level surface of this force field. There are infinite numbers of level surfaces,
so we choose the one that fits the best to the mean sea level. From this setup we obtain the less precise, however
very imaginable definition of the geoid: the continuation of the sea level beneath the continents. Let’s see, how
this picture was formed in the history and how could we use it in the practical surveying.

3.1 Change of the assumed shape of the Earth
in the science

The ancient Greeks were aware of the sphere-like shape of our planet. The famous experiment of Erathostenes,
when in the exact time of the summer solstice (so, at the same time) the angles of the Sun elevation were measured
at different geographical latitudes, to estimate the radius of the Earth, is well known. However, the accuracy of
the estimation, concerning the technology of that age, is considerably good.

Although the science of the medieval Europe considered the Greeks as its ancestors, they thought that the Earth
is flat. Beliefs, like "end of the world’, the answer to the question: what location we got if we go a lot to a constant
direction at a flat surface, were derived from this.

The results of the 15th and 16th century navigation, especially the circumnavigation of the small fleet of Magellan
(1520-21) made this view of the world obsolete. However the Church accepted this only slowly, the idea of the
sphere-like Earth was again the governing one.

There were several observations that questioned the real ideal spherical shape. In the 17th century, the accuracy
of the time measuring was increased by the pendulum clock. The precisely set pendulum clocks could reproduce
the today’s noon from the yesterday’s one with an error of 1-3 seconds. If such a correctly set up clock was trans-
ferred to considerably different latitude — e.g. from Paris to the French Guyana — higher errors, sometimes more
than a minute long ones, were occurred. This is because the period of the pendulum is controlled by the gravita-
tional acceleration, that is, according to there observations, obviously varies with the latitude. Paris is closer to the
mass center of our planet than the French Guyana is, thus the ideal spherical shape of the Earth must be somewhat
distorted, the radius is a function of the latitude, and the real shape is like an ellipsoid of revolution.

Distorted but in which direction? Elongated or flattened? The polar or the equatorial radius is longer? Perhaps
nowadays it is a bit surprising but this debate lasted several decades, fought by astronomers, geodesists, mathem-
aticians and physicists. Finally, the angular measurements, brokered by the French Academy of Sciences, settled
it. In Lapland, at high latitudes, and in Peru, at low altitudes, they measured the distances of meridian lines between
points where the culmination height of a star was different by one arc degree. The answer was obvious: the Earth
is flattened; the polar radius is shorter than the equatorial one.

13
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Shape of the Earth and its practical simplification

The flattened ellipsoid of revolution can be exactly defined by two figures, as it was shown in Chapter 2. Tradition-
ally, one of them is the semi-major axis, the equatorial radius, gives the size of the ellipsoid. The other figure,
either the semi-minor axis or the flattening or the eccentricity, gives the shape of the ellipsoid. The time of the in-
vention of this concept, the authors usually gave the inverse flattening. This figure describes the ratio between the
semi-major axis and the difference between the semi-major and semi-minor axes.

At the end of the 1700s and in the first half of the 1800s, several ellipsoids were published, as the better and better
approximations of the shape of the Earth. These ellipsoids are referred to as the publishing scholar’s name and the
year of the publication, e.g. the Zach 1806 ellipsoid means the ellipsoid size-shape pair described be the Hungarian
astronomer-geodesist Ferenc Zach in 1806.
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Fig. 9. The changes of the semi-major axis (left) and inverse flattening (vight) of the 'most up-to-date ellipsoid’ in
the time. The first data indicates the geoid shape of Europe, then the colonial surveys altered these values, and finally
the global values are provided.

The semi-major axis and the flattening of the estimated ellipsoids are not independent from each other. Fig. 9
shows the changes of these two figures as a function of the time, concerning the most accepted ellipsoids of that
time, from 1800 to nowadays. The first part of this period was characterized by the increase of the semi-major
axes and the decrease of the inverse flattening. The Earth occurred to be slightly larger and more sphere-like that
it was first estimated. However, estimating the semi-major axis and the flattening is not a very complicated tech-
nical exercise. So, why were the results different, why is this whole change?

The first observers published the results based on just one arc measurement. The first ellipsoid, that was based on
multiple, namely five, independent observations were set up by the Austrian scholar Walbeck in 1819. It occurred
that the virtual semi-major axis and the flattening is changing from place to place. So, the whole body is not exactly
an ellipsoid. It is almost that, but not completely.

This ’not completely’ occurred again during the building up the triangulation networks (see point 3.3). Because
of'this, the shape description based on the gravity theory, mentioned in the introduction of this chapter, was defined
first by Karl Friedrich Gauss in the 1820s. The name ’geoid’ was proposed by Johann Benedict Listing much later,
in 1872. Known the real shape of the geoid (Fig. 10) we can easily interpret the trend of the estimated ellipsoid
parameters. Based on the European part of the geoid, the Earth seems to be smaller and more flattened. However,
if we measure also in other continents, like in the locally different-shaped India, then we got the trend-line of the
Fig. 9.
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Fig. 10. The geoid, the level surface of the Earth, with massive vertical exaggeration.

The parameters of the most up-to-date ellipsoids, such as the GRS80, the WGS84, were determined by the whole
geoid, with the following constraints:

* the geometric center of the ellipsoid should be at the mass center of the Earth
* the rotational axis of the ellipsoid should be at the rotational axis of the real Earth
* the volume of the ellipsoid and the geoid should be equal, and

* the altitude difference between the ellipsoid and the geoid should be on minimum, concerning the whole surface
of the planet.

At a point of the surface, the geoid undulation is the distance of the chosen ellipsoid and the geoid along the plumb
line. The geoid undulation from the best-fit WGS84 ellipsoid along the whole surface does not exceed the value
of +£110 meters.

Summarizing: the equatorial radius of our planet is about 6378 kilometers, the difference between the equatorial
and the polar radius (the error of the spherical model) is about 21 kilometers, while the maximum geoid undulation
(the error of the ellipsoid model) is 110 meters.

3.2 The geoid and the ellipsoid of revolution

The mathematical description of the geoid is possible in several ways. It is possible to give the radius lengths from
the geometric center to the geoid surface at crosshairs of the parallels and meridians (latitude-longitude grid). We
can also give just the vertical difference of the geoid and an ellipsoid (the geoid undulations) in the same system.

15

http:// www.renderx.com/



render

Shape of the Earth and its practical simplification

The geoid can be also described by the form of the spherical harmonics. Describing a local or regional geoid part,
a grid in map projection can be also used.

Selecting any form from these possibilities, it is obvious that the geoid is a very complex surface. If we are about
to make a map, we have to chose a projection. The projections, that are quite easy if we suppose the Earth as a
sphere, become complicated in ellipsoidal case, while they cannot be handled at all, if the original surface is the
real geoid. It was even more impossible to use in the pre-computer age, while the mathematics of the map projections
was invented. So, in the geodetic and cartographic applications, the true shape of our planet, the geoid, is substituted
by the ellipsoid of revolution.

The ellipsoid for this approximation is generally a well known surface with pre-set semi-major axis and flatten-
ing/eccentricity. We can note, that in case of some ellipsoids, characterized by the same name and year, it is possible
to find different semi-major axis lengths (such as at the Everest ellipsoid, or the, aforementioned Bessel-Namibia,
see Table 3). The cause of this is according to the original definition of these ellipsoids, the semi-major axis was
not given in meters but in other units, e.g. in yards of feet. Converting to meters, it is important to give enough
decimal figures in the conversion factor. Omitting the ten thousandth parts in this factor (the fourth decimal digit
after the point) won’t cause much difference in the everyday life, however if we have millions of feet (such in case
of the Earth’s radius we do) the difference is up to several hundred meters.

name a b /£ f e
Laplace 1802 6376615[6355776.4 |306.0058{0.003268|0.08078
Bohnenberger 1809 [6376480(6356799.51 32410.003086(0.07851
Zach 1809 6376480(6355910.71 310{0.003226(0.08026
Zach-Oriani 1810 [6376130(6355562.26 310{0.003226(0.08026
Walbeck 1820 6376896 (6355834.85| 302.78(0.003303|0.08121
Everest 1830 6377276(6356075.4 300.8(0.003324|0.08147
Bessel 1841 6377397(6356078.96|299.1528(0.003343|0.08170
Struve 1860 6378298(6356657.14| 294.73(0.003393|0.08231
Clarke 1866 6378206(6356583.8 294.98|0.00339 |0.08227
Clarke 1880 6378249(6356514.87| 293.465/0.003408|0.08248
Hayford (Int'l) 1924 6378388 (6356911.95 297(0.003367|0.08199
Krassovsky 1940  [6378245|6356863.02 298.310.003352(0.08181
GRS67 6378160(6356774.521298.2472|0.003353|0.08182
GRS80 6378137(6356752.31(298.2572|0.003353|0.08182
WGS84 6378137(6356752.31(298.2572(0.003353|0.08182
Mars (MOLA) 3396200(3376200 169.81(0.005889{0.10837

Table 3. Data of some ellipsoids used in cartography. a: semi-major axis; b: semi-minor axis; 1/f: inverse flattening;
f: flattening; e: eccentricity.

The fitting of the ellipsoid to the geoid is an important exercise of the physical geodesy. Prior to the usage of cosmic
geodesy, this task could be accomplished by creating of geodetic or triangulation networks and (later) by their
adjustment.

3.3 Types of the triangulation networks, their
set up and adjustment

Measuring of the distance of two points is possible by making a line between them and by placing a measuring
rod along it — supposed the distance is not too long between our points. As the distance becomes longer, this pro-
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cedure starts to be complicated and expensive: distances of more than a several hundred meters are very hard to
measure this way. If the terrain between our points is rough or inpassable, this method cannot be applied at all.

Fig. 11. The sketch of the Belgian triangulation of Gemma Frisius from the 16th century.

A new method was introduced at the end of the 16th, early 17th centuries. Measuring a longer distance can be
made by measuring a shorter line and some angles. The first triangulation was proposed by Gemma Frisius (Fig.
11), then in 1615, another Dutchman, Snellius accomplished a distance measurement by triangulation between the
towers of Alkmaar and Breda (true distance cca. 140 kilometers, throughout the Rhein-Maas delta swamps; Fig.
12). During the campaign, he set up triangles with church towers at the nodes and measured the angles of all triangles.
Having these data, it was needed to measure only one triangle side to calculate all distances between the nodes.
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Fig. 12. The distance between the towns of Alkmaar (in the north) and Breda (in the south) was determined by the
1615 triangulation of Snellius, throughout swamps, marshlands and rivers.

The Snellius-measurements provided an interesting invention: the sum of the detected inner angles of a triangle
occurred to be slightly more than 180 degrees (Fig. 13). This is the consequence of the non-planar, spheroid geometry
of the surface of the Earth, and this is true at spherical triangles. It was the root of a new branch of the geometry:
the spherical trigonometry.

Fig. 13. Angles between far geodetic points from the point of Johannes Berg, Budapest (Habsburg survey, 1901).
The sum of the angles exceed the 360 degrees, according to the spheric surface.

Using triangulation networks, not only distances but also coordinates can be determined. For this, it is first needed
to measure the geographic coordinates of one point of the network. That’s why there is in most cases an astronom-
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ical observatory at the starting point of a geodetic network: these measurements can be carried out there in most
simple way. Also it is necessary a baseline: a shorter distance between two network points, whose distance is
measured physically, and an azimuth: the measured angle between the true north and a triangle edge to a selected
network point. Of course, the angles of all triangles should be measured together with the heights of the points.
Using all of these data, and assuming an ellipsoid with a pre-set semi-major axis and flattening, the coordinates
of all network points can be calculated. They are called triangulated coordinates. The longitude values in these
coordinates are measured from the meridian of the astronomical observatory (Fig. 14).

NN /N e POt [\ e

—

Fig. 14. Sketch of the 1901 triangulation network between Vienna and Budapest.

To check the obtained coordinates of the base points, more baselines and — which later brought a real revolution
in the data processing — the astronomical coordinates were observed at several triangulation points (at the so-called
Laplace-points) of the network. The observed positions, however, differed from the ones, computed by the trigo-
nometry. The difference occurred in all cases and its magnitude was not predictable. Its cause is the geoid shape
of the Earth: the astronomic observations are based on the knowledge of the local horizontal and vertical lines,
which are slightly different from the tangent and normal directions of the ellipsoid. As we mentioned above, the
whole body is not exactly an ellipsoid. It is almost that, but not completely.

This problem became so important in the first half of the 19 century that Gauss invented his famous method of
the least squares exactly to solve that. The goal is to ‘adjust’ the coordinates of the base points in order to minimize
the squares of the differences occurring at the Laplace-points. The method is called geodetic network adjustment,
which is, in practical words, to homogenize the errors, mostly caused by the geoid shape, in the whole network.
The result of the adjustment is a geodetic point set organized into a network, with their finalized coordinate values.

What means the adjustment from geometric point of view? What is the geometric result? An ellipsoid whose
* size and shape was pre-set during the adjustment;

» semi-minor axis fits (as much as possible) to a parallel direction of the rotation axis;
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* surface part — the one set by the extents of the network — fits optimally to the same part of the geoid.

The geometric center of this ellipsoid is, of course, different from the mass center of the Earth (Fig. 15). This way,
not only the size and shape of the ellipsoid is known but also its spatial location.

Fits this meJF"“\
the Earth
poorly

a— Geoid
{(Sea Level)

Centre of
Mass of Earth

Equator S 0

"\ Centre of
Spheroid

-

Fits this part of
the Earth well

Spheroid =

Rotation Axs

Fig. 15. Geometric result of the geodetic network adjustment: fitting the ellipsoid to the surveyed part of the geoid,
the geometric centre differs from the mass center of the Earth.

From the point of view of the ellipsoid location method in space, there are three types of them:

¢ deliberate displacement: there is only one astronomical base-point, the network is not adjusted, the ellipsoid is
fit to the geoid surface at only one point (usually the location of the astronomical observatory). This method is
characteristic at the small islands in the ocean, with no continent on the horizon; the network names are often
indicated by the ’ASTRO’ sign. Also, this is the usual method used at the old mapping works, having geodetic
basis that was build before the invention of the adjustment method.

« relative displacement: the network adjustment is accomplished, the ellipsoid is fit to a certain part of the geoid
surface, practically to the extents of the survey.

* absolute displacement: the geometric center of the ellipsoid is at the mass center of the planet, the semi-minor
axis lies in the rotational axis. It cannot be realized just by surface geodesy or geophysics (as the exact direction
of the mass center cannot be determined from the surface by geophysical methods). For its implementation,
space geodesy (Doppler measurements, GPS) is needed. Prior to the space age, before to the 1960s, there were
no ellipsoids with absolute displacement. The WGS84 is a typical example of this.
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Chapter 4. Geodetic datums

A geodetic datum is an ellipsoid (described by parameters of its size and shape) together with the data about its
dislocation, and in some cases, its orientation and scale. It is very important to note that as the ellipsoid size, the
dislocation and the orientation are different from a datum to another one, the geodetic coordinates in the different
datums (according to different geodetic networks) are also different. We repeat: at a same field point the geodetic
coordinates are different on different datums (Fig. 16). The GIS software packages are capable to make transform-
ations between them, if the appropriate datum parameters are known. . This chapter shows the method of usage
and estimation of these parameters.

8-42 (Gauss-Kr.)
46:15:36:5328N
20:0B:33.6438E

HD-72 (EOV):
46:15:36.18500
20:08:31.8906E

WGs-B4 (GPS):
46:15:35.2560N
20:08:27:BB95E

Fig. 16. The ellipsoidal coordinates of a church in the city of Szeged are different in different geodetic datum. This
is the case of all terrain points.

4.1 Parameters of the triangulation networks

As it was shown in the previous chapter, the triangulation networks are characterized by its geodetic point set and
the fixed geodetic coordinates of these base-points. A triangulation network is a geodetic datum. To use it in any
GIS software, we have to give these data of the network in a more compressed way that is still characteristic for
the whole network. We have also to know that which data is needed for a network/datum description for our very
GIS software.

The most commonly used possibilities in geodetic practices to provide data at a selected point of the network (the
so-called fundamental point) are as follows:

« the geodetic coordinates
« the astronomical coordinates and

* atriangulated and astronomical azimuth to a selected neighboring network point.
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As the geodetic network adjustment can be interpreted as the fit of the ellipsoid to the geoid surface, the geoid
undulation at the fundamental point is usually taken as zero. If it is different by any cause, if should be given, too.
For example, in the case of the Hungarian Datum 1972, the geoid undulation at the Sz6l6hegy, the fundamental
point, is set to 6.56 meters by the reason to fit it vertically to the unified datum of the former Warsaw Pact carto-
graphy. This value should be taken into account during our work to avoid vertical errors, if they are important.

The above set of information is considerably smaller than the one represented by the whole set of base-point co-
ordinates in the network. It is assumed that by fitting the given ellipsoid to the fundamental point, described its
own data, the coordinates of the other points can be computed. Obviously, it is not true, and the quality of a geo-
detic datum is given by just this accuracy of the point coordinate calculation at all points of the network. Usually,
the newer the triangulation network, the better its quality is. In case of the historical Hungarian systems, the average
error at the networks form the end of 19th century is 2-3 meters, 1,5-2 meters at the systems of mid-20th century,
while nowadays the accuracy is as low as half a meter.

Sometimes there are other ways to giving parameters to a geodetic network: to use the three-dimensional Cartesian
coordinates of the fundamental point or just giving the components of the deflection of vertical, completed by the
geoid undulation.

The above parameters do not suit the GIS software needs; these programs follows a different philosophy at the
datum definition. They are not using just one datum but aim to handle several ones. So, they need parameters
between datums and not just for parameters of different ones. In most cases, they don’t handle all possible datum
pairs to convert between them but select one datum and give the transformation parameters from any other one to
this. Practically, this selected datum is an absolutely displaced, globally fit WGS84, and all other (local) datums
are characterized by the transformation parameters from them to the WGS84. In this method, it is needed to define
the position of the geometric center of the local datum ellipsoid and — if available — the orientation difference
between the local datum and the WGS84.

4.2 The ’abridging Molodensky’ datum paramet-
rization method

The easiest way to define the connection between two datums is to define the vector connecting their geometric
centers (Fig. 17). This vector should be given by the components in the geocentric Cartesian coordinate system,
described in the Chapter 2, expressed in meters. Obviously, if both analyzed datum are of absolute dislocations,
this vector is the null vector, with the components of (0 m; 0 m; 0 m). It should be noted that the international lit-
erature often and erroneously called this method as Molodensky- or Molodensky-Badekas-type parametrization,
albeit they are indeed more complex ones.
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Fig. 17. The abridged Molodensky transformation is a simple shift between two datum ellipsoids, expressed by the
three components of the shift vector.

So, the three parameters of the abridging Molodesky datum description are the metric distances of dX, dY and dZ,
describing the spatial locations of the geometric centers of the datum locations from each other. If one of these
datums is the WGS84, these dX, dY and dZ parameters give the location of the local datum with respect to the
mass center of the Earth. If the coordinates of a basepoint are known on a Datum ’1°, the geocentric coordinates
on the Datum 2’ are the following:

4.2.1)

The angular difference between the coordinates on the starting and the goal datums can be also expressed without
to convert to geocentric coordinates and vice versa:

AD"— = dXsin®cos A —dY sin®sin A +dZcos® +(a-df + f - da)sin 20) (4.2.2)
M sinl"

(4.2.3)

Ah = dX cos®cos A +dY cos®sin A +dZsin® +(a-df + [ -da)sin® ® — da (4.24)

where is the curvature in the prime meridian; is the curvature

in the prime vertical; A®” and AA” are the latitude and logitude differences between the coordinates of the two
datums in arc second; Ah is the difference between the ellipsoidal heights; a and f are the semi-major axis and the
flattening of the starting datum; while da and df are the differences of them between the starting and goal datums.
If the ellipsoidal heights are not given, they can be estimated from leveled heights using geoid models, or we can
simply omit the Equation (4.2.4) at the calculation.
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As it was mentioned, the GIS packages describe the datums by parameters between them and the WGS84 special
datum, thus handling the problem that a datum cannot be this way parametrized alone, just the difference between
it and another datum. If we have two different datums (not the WGS84) and we know the parameters of the trans-
formation from them to the WGS84, the abridging Molodensky parameters between the two datums can be given
because of the linearity. Let the transformation A is the one between the first datum and the WGS84 and the
transformation B is the one from the second datum to it. The C shows the direct transformation from the first and
second datums. The parameters of this C are (commutation):

(4.2.5)

These parameters are not depending on the ellipsoids used for the different datums. For example, the datum shift
parameters from the Austrian MGI datum to the WGS84 are dX=+592 m; dY=+80 m; dZ=+460 m. The same
parameter set between the German DHDN77 system and the WGS84 are dX=+631 m; dY=123 m; dZ=+451 m.
Thus, the direct transformation parameters from the MGI to the DHDN77 are dX=-39 m; dY=+57 m; dZ=+t9 m.

In the literature, we often find different number triplets as parameters of a transformation from a specific datum
and the WGS84. Albeit it is obviously an error in spatial context, the transformation error in the horizontal coordin-
ates (latitude and longitude) is not necessarily significant at them. Using different triplets as abridging Molodensky
parameters for a datum, as it is shown below, there is always one point on the ellipsoid, where the two different
parameter set result the same horizontal shift. The main question is, whether this point falls to the extents of the
valid territory of the datum (the geodetic network), if possible, near to its center/fundamental point, or not. If yes,
both parameter sets can be used and we can compute the vertical difference of the two datums at that point. Usually,
the difference is because of the neglecting of the geoid undulation value.

Let r1 the position vector from the center of the WGS84 to the geometric center of the Datum version 1 and r2 is
the similar one to the center of the Datum version 2. Making the difference of these position vectors in the space:

Faiff = 112 (426)
Now, let’s check that this vector shows to which point of the reference surface:

(4.2.7)

(4.2.8)

while the length of the difference vector (the spatial difference) in meters is

(4.2.9)

If the point (p,,4,) is in the area of the used triangulation network, possibly near to the fundamental point, both
versions can be used. As I mentioned above, in this case, the length of r4;¢ is usually around the geoid undulation
value between the local datum and the WGS84 at the point (¢,,4,). If this point falls to a distant position on the
Earth’s surface, one of the parameter sets is erroneous.

4.3 The Bursa-Wolf type datum parameters

The Bursa-Wolf type parametrization method (called after the Czech Milan Bursa and the German Helmut Wolf)
handles not only the difference of the positions of the geometric centers of the datum ellipsoids, but also the orient-
ation differences and the small scale variations as one or both datum’s size differs indeed from the ideal size of
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the selected ellipsoid (Fig. 18). The transformation is expressed for the geocentric Cartesian coordinates as input
and out data, as follows:

(4.3.1)

This is a special case of the spatial Helmert similarity transformation for very small rotation angles (a few or a few
tens of arc seconds), with the possible simplifications. In this equation, the dX, dY and dZ are the same as in case
of the abridging Molodensky transformations (but, as it shown below, cannot be handle in that without analysis!),
&y & and g, are the rotations along the coordinate axes and k is the scale factor. If there are no rotations and the
scale difference is zero, the Equation (4.3.1) becomes the same to Equation (4.2.1).

Fig. 18. The Bursa-Wolf transformation handles both the shift and the orientation differences between the two
datum ellipsoids.

In fact, there are two different sign convention of the non-diagonal matrix members in Equation (4.3.1). If these
signs are used like in the Equation (4.3.1), it is called coordinate frame rotation, which means that the coordinate
axes are rotated around the fixed position vector. However, if all the signs of the non-diagonal members in the
matrix of (4.3.1) are reversed, this convention is called position vector rotation, as this vector is rotated in the fixed
coordinated frame.

Neither of the above conventions is an accepted standard. The United States, Canada and Australia use the ‘co-
ordinate frame rotation’, while in Europe the ‘position vector rotation’ is mostly preferred. The international draft
ISO19990 also proposes this latter one, however because of the U.S. refusal its international acceptation is ques-
tioned. We have to know that as most GIS software packages are developed in the U.S., Canada and Australia, the
‘coordinate frame rotation’ is a quasi-standard in them, while most European meta-data are published according
to the ‘position vector rotation’ convention. If we are provided a Bursa-Wolf type parameter set for a datum, first
try to use it assuming the ‘coordinate frame rotation’, and if the results are obviously erroneous, switch all the
signs of the rotation parameters.

Similarly to the abridging Molodensky transformation, the Bursa-Wolf formula is commutative. It is possible to
express the resultant of two transformations by simply summarize their respective parameters. This perhaps sur-
prising statement can be easily understood mathematically:

The Equation (4.3.1) after two, successive transformation can be expressed in form
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X’ =dx, (1K) A, [dx, +(1+Kk ) A x] (4.3.2)

where dx; and dx, are the two shift vectors, k; and k, are the two scale factors, and A; and A, are the rotation
matrices, X is the input position vector and x’ is the result. Organizing this can be expressed in form

X,:dX2+( 1 +k2)A2Xm+( 1 +k2)( 1 +kl)A1A2X (43 3)

where the dx,.k, and A, parameters of the resultant transformation are

er:dX2+( 1 +k2)A2 dX] (4 3 4)
kr:k1+k2+klk2 =~ k1+k2 (435)
Ar:AlAZ ~ A1+A2 (436)

The approximation of (4.3.5) can be immediately understood in cases when the scale factors are in order or 1-10
part per million (ppm). The approximation of (4.3.6) is a bit more difficult, we should accomplish the matrix
multiplication, omitting the resulted members falling to the range of the squares of the rotation angles and the scale
factor. The right side of the Equation (4.3.4) is the second transformation done to the dx; shift vector. Omitting
the effect of the very small scale factor, it is

dx.=dx,+A,dx;= dx;+dx, (4.3.7)
As the shift vector is usually much more short that the position vectors (n*100 meters compared to the Earth’s ra-
dius), this approximations fits well to the practice. The three-dimensional error of this simplification is in the order

of some centimeters while its horizontal component is even smaller. So, the linear commutation can be applied in
the practice for the Bur§a-Wolf transformation, too.

4.4 Comparison of the abridging Molodensky
and Bursa-Wolf parametrization

The most important differences between the abridging Molodensky (AM) and the BurSa-Wolf (BW) methods are
shown in Table 4:

AM parametrization BW parametrization

Easier More complex

Usually less accurate Usually more accurate

The parameters can be easily computed | The parameter estimation is difficult

The parameters are unambiguous There are two conventions at the rotation parameters

Known by all GIS software packages |Known by most (but not all) GIS software packages

Table 4. Comparison of the abridged Molodensky (AM) and the BurSa-Wolf (BW) datum parametrization methods.

Here we have to note that the mapping authorities of the United States follow the AM-parametrization, while the
NATO adapted the BW-method.

Applying any of these methods, due to the errors of the previous geodetic network adjustments, the transformation
accuracy fits to the geodetic needs (a few centimeters) only in a small area. The high-accuracy transformation ex-
ercises should be accomplished by other methods, e.g. using higher order polynomials. However the GIS software
packages usually don’t let the users to define polynomial transformations — however the usage of correction grid
(GSB — Grid Shift Binary) files sometimes offers a good solution. However, out aim for the accuracy of a few
meters (according to the map reading) is usually fulfilled by both methods. The usual errors of transformation from
historical and modern Hungarian networks to the WGS84 are shown in Table 5:
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System Average (max.) error of AM | Average (max.) error of BW
Second survey (1821-59) {30 (200) m Transformation not defined
Third survey (1863-1935)|5 (12) m 1,5(4)m

DHG (1943) 2(5)m 2(5)m

EOV (1972) Im 0,2 (0,5) m

S-42 (1983) I m 0,2 (0,4) m

Table 5. The most frequent application errors of the two methods in Hungary. DHG (Deutsche Heeres Gitter) is
the WWII German geodetic network, applied to Central and Eastern Europe.

The main source of the application errors is that usually there is no easy way to computation of the AM-parameters
from the BW-type seven-parameter set. If we know the seven parameters of a BW-transformation, the three para-
meters of the AM-type transformation of the same datum cannot be obtained by just omitting the scale factor and
the rotation parameters, keeping the shift ones only!

Sometimes it is tried to improve a less accurate BW-parameter set by substituting just the shift parameters from
another transformation. As we see in the next chapter, it is incorrect; in most cases, the parameters of the BW
transformation cannot be obtained separately.

If a parameter set (both AM or BW-type) provides incorrect results, especially if the transformation error is the
double of the error without any datum transformation, try to inverse the signs of all of the parameters. If this does
not correct the results, in case of the BW-method, try to change the signs of just the rotation parameters. Check
whether the units we use are following the needs of the software used (arc seconds or radians). In most softwares,
the scale factor should be given in ppm (part per million), while in other cases, the true value (a number close to
the unity) is expected (the 'no scale difference’ is expressed by zero in the first and by one in the second case).
And finally; most software uses the newly set parameters only after restart.

4.5 Estimation of the transformation parameters

If we have a geodetic base-point set, containing the coordinates in two different datums, the transformation para-
meters between these datums can be estimated, according to both the AM and the BW methods.

The AM-parameters, the vector components between the geometric centers of the two datum ellipsoids, can be
obtained easily. This calculation can be made even if the coordinates of just one common point (in most cases, the
fundamental point) are known. It this case, we calculate the Cartesian coordinates of the point in both systems,
using the sizes and figures of the ellipsoids and the geoid undulation values. Interpreting these two coordinate
triplets as position vectors of the point in the two different systems, the desired parameters can be obtained as the
components of the difference vector between them. First, the coordinates should be transformed to geocentric
Cartesian ones:

4.5.1)

first on the Datum 1 then on Datum 2. The first datum is usually a local one while the second is the WGS84. Then
the parameters are:

(4.5.2)
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In the Equation (4.5.1), h expresses the elevation above the ellipsoid (cf. Chapter 3). If we have the elevations
above the sea level (above the geoid), we shall convert them all to ellipsoidal heights, using the geoid undulation
values on local datum. If the elevations are unknown at all, they should be replaced simply by the geoid undulation
values. If these values are unknown, use zero values. The geoid undulation values for the WGS84 (the second
datum) can be obtained from a global geoid model, e.g. the EGM96. EGM96 data is available directly on the Internet,
and free calculation programs are also available.

If we have more common points, we can repeat the above procedure for every point and the final parameters are
provided by averaging.

Estimation of the BW-parameters are much more complicated. There are two approaches to do it. Usually, it is
done by standard parameter estimation of the least square method. It is far beyond the goal of this handout to show
the whole procedure, however it is worth to note that the method estimates the parameters simultaneously. This
means that the parameters cannot be interpreted independently from each other — that’s why we can’t substitute
the AM-type shift parameters to a BW parameter set, leaving the rotation and scale parameters untouched. In
general, it is possible that the same transformation is described well by apparently very different BW parameter
sets, and — contrary to the AM method — there is no easy way to show their similarity. However, there is another
BW parameter estimation method, simply enough to explain, providing real, geometrically independent parameters,
albeit its accuracy is a bit worse.

Let’s suppose that we shall derive parameters for a transformation between the WGS84 and a local datum with
known fundamental point, whose coordinates are known on both the local datum and the WGS84. In the first step,
we calculate the AM type shift parameters between the two systems, using Equation (4.5.2). In the following, we
choose rotation and scale parameters for them, to improve the horizontal and spatial accuracy of the transformation.

First, we shall use the fact that the effect of the scale factor to the horizontal coordinates is much less than the effect
of the rotation. Moreover, we shall realize that there is a connection between the three rotation parameters and the
location of the fundamental point plus the observer azimuth at it (spherical case):

(4.5.3)

(4.5.4)

(4.5.5)

The inverse formulas for the ellipsoid:

(4.5.6)

(4.5.7)

(4.5.8)

The coordinates of the fundamental point are known. We also know that the rotation is around this point, by a
single angle of a. We can estimate this angle a by calculations only if we know the azimuths from the fundamental
point in both systems. However, the problem is reduced to a one-variable minimum search, even if we don’t know
both azimuths. We shall seek the angle a, thus rotation parameters r,, r, and r,, which provides the best fit between
the coordinates throughout the whole base-point set. This minimum search can be easily carried out by iteration,
even in any spreadsheet software.
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The scale factor reflects to the length measurement error at the baseline, or some minor mismatch in inappropriate
using of length etalons. However, if we set the shift and rotation parameters, the scale can be estimated by another
iteration step.

This method is slightly less accurate than the standard simultaneous parameter estimation, as the scale and the ro-
tation is not fully independent from each other. However, the provided parameters can be interpreted separately
geometrically. The standard estimation procedure is provided in the Appendix.

4.6 The correction grid (GSB)

These datum transformation methods, discussed in the above points, however, provide enough accuracy for GIS
applications, are not capable for high-precision geodetic-engineering purposes. Even the BW-method can transform
between the modern triangulation based datums and the WGS84 only with a remaining error of half meter in a
region like Hungary. The survey geodesy needs much higher accuracy: ten centimeters inside cities and villages
and 20 centimeters outside the settlements. Therefore, the standard geodetic applications use higher order (in the
Hungarian practice, e.g. fifth-order) polynomials for the calculations. Similar accuracy can be obtained using BW-
transformations based on only the base points in the vicinity of our study area.

However these applications are accurate enough, they have a considerable hindrance. There is no way to define,
therefore, apply them in GIS packages. These software items usually do not support these methods, we can not
define them by parameter input. The BW-parameter grid (a seven-channel image, each channel containing the
different BW-parameters, changing from place to place) can be used in some GIS packages, but its definition is
quite difficult. There is, however, an application, whose definition is easier and is supported by many packages,
including the open-source ones (e.g. the GDAL-based Quantum GIS). This is the correction grid, which is often
referred to as, according to its standard file extension, Grid Shift Binary (GSB).

Similarly to the AM- and BW-methods, this does conversion between geodetic coordinates on different datums.
The correction grid itself is a grid, which is equidistant along the meridians and parallels. The eastward and
northward shift between the two datums should be given at their crossings, in arc seconds. We can give, if we
know it, the errors of the shifts at all grid points. However, it is not compulsory, if the errors are unknown, we can
simply give zeroes for these data fields. The real shift values are derived from horizontal base points, whose co-
ordinates are known in both the source and the target datums. The eastward and northward (or, with negative sign:
westward and southward) shifts are handled separately: we construct two (or, with the error grids: four) different
grids. The shifts, read in the base points, are interpolated at the pre-set grid points, in both grids.
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NUM_OREC 11
NUM_SREC 11
NUM_FILE 1

6S_TYPE SECONDS
VERSION NTu2.9®
DATUM_F HD72
DATUM_T WGS8Y
MAJOR_F 6378160.000
MINOR_F 6356774.516
MAJOR_T 6378137.000
MINOR_T 6356752.314
SUB_NAMEOGPSH95
PARENT  NONE
CREATED B4-18-18
UPDATED B4-18-18

S_LAT 164520. 060000
N_LAT 174960. 060000
E_LONG -82800. 000008
W_LONG -57600. 0000008
LAT_INC 180. 000000
LONG_INC 180. 000000

G5_COUNT 8319
-0.00000000 -0.000000000 -0.001000 -0.001000

-0.00000000 -9.000000000 -90.001008 -0.081000
A AAAAAAAR A AAAAAAARR A GA4AAA A AO4AG66

Fig. 19. The header of the GSB data. The first 11 rows is the general header, the next 10 rows refer to the subset
extents, then follows the number of data points and the point shift and error data itself.

These grids, combined with their meta-data (e.g. resolution, extents; Fig. 19) should be converted into a binary
file. The file can contain even more grids, with different resolution. Therefore we can define a correction dataset
providing higher accuracy in some important regions, while we have a general transformation with unified accuracy
for a larger area.

It shall be underlined again that the correction grid provides connection directly between the coordinates in the
source and the target datums. Neither the AM-, nor the BW, nor any other conversions should be used; applying
the grid makes all of them unnecessary. The GSB-method aims the accuracy of a few centimeters in case of
transformation between modern networks. It can also provide surprising accuracy also at geo-referencing of histor-
ical maps, if the control point network is sufficiently dense and properly selected (Fig. 20).
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Fig. 20. The GSB technology provides excellent fit of old maps to new ones (center of Budapest in a 18th century
map, note that the east bank of the river was considerably far from the other bank int hat time).
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Chapter 5. Maps and projections

For the geographical information systems, maps are important data sources. In many cases, the map is represented
by a scanned image, and the important data occurs as image information. Sometime we need to digitize a part of
this information in vector format. To apply this information content it is needed to put this image into a pre-defined
coordinate system, using the metadata and auxiliary information of the map. In this chapter we discuss the necessary
meta- and auxiliary data and the methods to handle them.

Maps are planar, projected versions of the data on the base surface. Every map has a base ellipsoid, a datum (a
representation of this ellipsoid), whose surface is projected to the plane of the map using some projection. The
GIS packages usually know the equation information of the important map projection types. So, in this chapter we
try to show the projections without to mention the projection equations.

5.1 Map projections and their parameters

For mapped representation, the surface of the Earth, the geoid, or rather its simplification, the ellipsoid should be
projected to a plane. This procedure cannot be accomplished without distortion neither from the sphere, nor from
the ellipsoid or from the geoid. Because of practical considerations (cf. Chapter 2), the geoid is not an input shape;
the Earth is represented by sphere or ellipsoid in these computations. The procedure is called ‘projection’. The
points of the surface of the sphere or the ellipsoid can be projected to a plane, to a cone or to a cylinder. The cone
and the cylinder can be smoothed to the plane of the map (Fig. 21).

N

LS 4

Fig. 21. To project the sphere to a plane: cylindric, conic and planar projections.

Projections are realized by projection equations. These equations create the connection between the map plane
coordinates (projected coordinates) and the spherical or ellipsoidal coordinates. The most general form of the
projection equations is:

E=f\(®,4,p;,....0n); (5.1.1)
N=E(D,A D ....py)- (5.1.2)

where E and N are the projected coordinates of a point, p;...p, are the parameters of the projection.. Using this
nomenclature (the Easting and Northing) we assume that the coordinates increase to east and to north, so the pro-
jected system has north-eastern orientation. This is true in most cases, however we discuss below the most important
exceptions. The exact definition of the scale of the map is the number (usually much more less than one), which
we have to multiply the resulted E and N coordinates with, to draw the map in the small piece of paper. As the
Equations (5.1.1) and (5.1.2) are the direct projection equations, their inverse counterparts are

DP=g|(EN.pj,....Dn); (5.1.3)
A=g(ENpy,....pn)- (5.1.4)

The mathematical form of the functions f}, f5, and g;, g, are based on the type of the projection. Sometimes their
form is quite complicated, in some cases they are implicit functions. However, in the GIS practice it is usually not
necessary to work with these equations or even to know them — in most GIS packages or GPS receivers, they are
pre-programmed. All we have to know is to handle them, giving them correct parameters. The projection equations
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can be assumed to be exact; the successive application of the direct and inverse projection equations provides the
input coordinates with an error less than a millimeter.

Parameters p; ...,p, are based on the realized projection and their number # is a function of the projection type. In
most cases n=5; however in some early projections e.g. the Cassini-Soldner, n=4; while in case of complicated
ones, as the oblique Mercator or the oblique conic projections, n=6. These parameters should be known by the
software — or, which is much more assuring, by ourselves. Let’s see, what parameters are needed for the projections.

Every projection has a so called projection origin or in other words, projection center. This point is the touching
point of the plane/cylinder/cone and the ellipsoid. If the touching occurs along a line in cylindrical symmetric case
(the central line of the projection), a point of this line should be assigned as projection center. The ellipsoidal latitude
and longitude of this point are two necessary parameters.

The projected coordinates of the projection origin are the third and fourth mandatory parameters. As a default,
they are both zeroes, however for practical considerations, they are often set to different values, e.g. to obtain
positive or distinguishable coordinates throughout the mapped area. Because of this shift, these parameters are
called FE (False Easting) and FN (False Northing), and they are expressed usually in meters.

A further, fifth parameter is the scale factor. In some cases, the plane/cylinder/cone is not placed in toughing but
in secant position, in order to enlarge the low-distortion area around the projection center or around the central
line of projection (Fig. 22). The scale factor is 1 in touching cases, and it is usually less than one, showing the re-
duction ratio. The only exception is Ireland, where the scale factor is more than one, because of historical reasons
(to have a similar scale at the center as it was provided by the British system). In case of conic projections, instead
of the scale factor, the standard parallels, where the cone cuts the base surface, can be also given.

)

. N
W N N e
\

Fig. 22. If the cone, the cylinder or the plane is placed to secant position, the length distortion is zero along the
secant lines.

In case of oblique cylindrical projections, the projection origin is on the central line of the projection. It can be its
farthest point from the equator (called Laborde projection) or its intersection with the equator (called Hotine pro-
jection). In general case, however, any point of the central line can be a projection center; that’s why a sixth para-
meter is needed for this projection type: the azimuth of the central line at the center (Fig. 23).
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Fig 23. The tangent line is an oblique great circle in case of the oblique Mercator projection. The length distortion
is minimum along this line.

It is important to mention that a projection means the type of the projection, but also its realized form, when the
above mentioned parameters are fixed. On the maps, we see coordinates of realized projections.

The standards, describing the projecting procedures, often mention double projections. In these cases, the projection
equations can be written in two steps: first projecting from the ellipsoid to an aposphere, then in the second projection,
from the aposphere to the plane/cylinder/cone. Obviously, this was needed for the computations of the pre-computer
age. In most cases, this raises no practical problems; the equations used in the GIS packages are good approximations
of the double projections. If the centers of the two projections are not in the same place, the method of approximate
projections (see below) can be applied.

There are a few tens of projection types that are used anywhere in the world. However, only a few of them are
widespread used. Here we discuss the three most important ones; a cylindrical, a conic and a planar projection,
the transversal Mercator, the Lambert conformal conic and the oblique stereographic ones, respectively. All of
these discussed types are conformal projections.

At the transverse Mercator projection, the axis of the cylinder is in the plane of the equator. The origin of projection
is at the equator. If the scale factor is the unity (e.g. in case of the former Warsaw Pact’s Gauss-Kriiger projection
or the WWII German military grid), the cylinder touches the base surface along a meridian, this is the central line
of the projection. In this case, the low-distortion are, where the length distortions remain under 1/10000, expands
to about 180 kilometers on both sides of the central line. It can be extended by applying a scale factor less than
one: e.g. in case of the UTM (Universal Transverse Mercator), where k=0.9996. The False Northing is usually
(but not exclusively!) set to zero, while the False Easting is defined to avoid negative coordinates, e.g. FE=500000
m.

In case of the Lambert conformal conic projection, the axis of the cone is in the semi-minor axis of the base ellipsoid.
The central line of the projection is the parallel line where the cone touches the base surface (also known as normal
parallel). The projection origin is a selected point of this parallel. This projection is usually used with reduction
(scale factor is less than one). This projection can be defined by the projection origin and the scale factor or by the
projection origin and the two parallels where the cone cuts the ellipsoid (standard parallels).

In case of the oblique stereographic projection (also known as Roussilhe-projection) we put a plane to a selected
point of the base surface, perpendicular to its normal direction at that point, which is the projection origin. If the
scale is unity, the low-distortion zone is a circle with a radius of about 127 kilometers around the projection origin.

In case of every projection, there is a zone with low distortion. As we have seen, in case of the transverse Mercator,
it is a stripe along the central meridian, at the conformal conic projection this stripe is along the normal parallel,
while it is a circle around the origin, using stereographic projection. If the mapped area extends beyond this range
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(in case of larger countries, or even the whole surface of the Earth), there usually are more projections defined
with different origins, for different zones. The projection types are usually the same in these zones but the parameters
are different, realizing different projections of course. In France, there are 4 zones of the Lambert conformal conic
projection, each zone is elongated from west to east along the respective normal parallels. Using transverse Mer-
cator projection, Austria defined 3, Germany 5 (prior to the territory losses, 7) zones, along central meridians. The
zone system of Poland uses 4 stereographic and one transverse Mercator projections. These groups of projections,
used as zones to map a larger area, are called projection systems.

In case of smaller countries, one zone is often enough to make low distortion maps. In the Netherlands, one stereo-
graphic projection is defined. The situation is similar in Romania, however this country is larger than the low-
distortion area of the stereographic projection. The shape of the countries or regions suggests the projection type
to be selected for the only zone. If the area is elongated from north to south (e.g. Chile, Portugal), the transverse
Mercator projection is a good choice. For east-west elongated countries, e.g. Belgium or Estonia, the natural selection
is the Lambert conformal conic projection. Switzerland and Hungary opted for oblique Mercator for the same
reason, however for both countries the conic projection would have been also a good or even better possibility.
The territory of Czechoslovakia between the two world wars could been mapped using one zone just by an oblique
conic projection.

In the projected maps, the points of the same Easting or same Northing values are linear lines. The map grid or
projection grid consists of these lines. The meridians and parallels are usually curves in the maps, just some distinct
meridians and parallels can be linear. At every map points, there is an angle between the grid north and the geo-
graphic north; it is called the meridian convergence. Usually the meridian convergence is varying from place to
place (an exception is the true Mercator projection where it is zero everywhere). We have to know, even seeing a
low-scale map without projection grid indicated, that the invisible projection grid is there, behind the curves of
parallels and meridians.

5.2 Transformation between projected coordin-
ates

For the correct transformation from grid coordinates of a system to another one, not only the projections and their
parameters should be known in both systems but also the datums of them. In ideal case, the two grids are interpreted
in the same datum. However, in most cases, they are not.

The three possible ways of the coordinate transformations are shown in Fig. 24. Of course, in the datum is the
same, the datum transformations are not needed. However, if the datums are different, we shall choose one of these
three ways.
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Fig. 24. The flow-chart of the coordinate transformation from the source system (indicated by the 1’ index) to the
target one (indicated by ’2'5). 1: direct polynomial transformation; 2: the abridging Molodensky transformation
or the GSB shift; 3: Bursa-Wolf transformation.

The direct transformation is based on higher-order polynomials, whose several parameters are estimated from the
coordinates of base points in both systems. Here this method is not discussed, as — albeit it is the most accurate
method — its parameters cannot be supported in most GIS packages.

The second way starts with the usage of the inverse projection equations: we calculate the ellipsoidal coordinates
in the first datum from the grid coordinates. In second step, using the abridging Molodensky formulas, we transform
the ellipsoidal coordinates from the first datum to the second one. Here we shall know that this transformation can
be accomplished by correction grids, too. In the final step, we transform the ellipsoidal coordinates in the second
datum to the final grid coordinates, using the direct projection equations of the second grid. The errors of this
method are because of the ambiguity of the datum transformation, the distortion between the two geodetic networks;
the projection equations can be accepted as exact ones. This method is used by the GPS receivers with one difference:
the input data is given in WGS84 ellipsoidal coordinates and the method starts with their transformation to the
local datum, omitting the first step, the usage of the inverse projection equations. The method is also supported by
all GIS packages.

If we know the BurSa-Wolf type datum transformation parameters between the two systems, and our software
supports this kind of transformation, it needs geocentric coordinates as input data. So, two more steps are applied:
transformation from ellipsoidal coordinates to geocentric one and vice versa. The direct case is part of the trivial
trigonometry, however computing the ellipsoidal coordinates from the geocentric one is surprisingly difficult in
ellipsoidal case. Its closed formulas, or more precisely, its algorithm, was first given in 1989 (the Borkowski
method), and its development is still an important research direction. However, the closed Bowring-formulas can
be applied. The horizontal error of this approximation is below 1 centimeter; that’s why this is used in GIS packages.
Therefore, the error of this way is caused again by the ambiguity of the datum transformation.

In our practice, it is very rare when we shall make these computations ourselves. They are programmed in our
software or GPS device, the only necessary inputs provided by us are the projection and datum parameters, if they
are not pre-set in the application. However for us, the specialists, it is worth to know what is inside the ‘black box’.
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5.3 Substituting projections

Sometimes we face the problem that our GIS module does not know the projection equations of one of our used
systems. More frequently, we shall geo-refer a map of unknown projection. This sub-chapter discusses the procedures
used in these cases.

The less-used projections are not necessarily programmed in GIS software packages. The Hungarian EOV with
its double projection or the Czecho-Slovak Kfovak system is often not supported in these packages. A simple user
cannot make this programming work, even using the software development kits. However, it is always an option,
to choose another projection type from the supported ones and to give its parameters, keeping the difference of
the original and this, so-called substituting projections as low as possible. In the following, some examples are
shown to use substituting projections.

A) Substituting the Hungarian EOV grid by Hotine- or Laborde-projection

The standard of the EOV grid contains a double projection: first from the IUGG67 (GRS67) ellipsoid to the apo-
sphere, then from that surface to the cylinder. The normal parallel of the first projection is different from the latitude
of the origin of the second one. In the GIS packages, the Laborde- and Hotine-projections (sometimes called also
RSO; Rectified Skew Orthomorphic, or simply Oblique Mercator projection) are practically such double projections,
where the origins of the two successive projections are the same. The specific case of the EOV grid is not pro-
grammed, and it is not easy to implement by ourselves.

Therefore, to use the EOV grid, we shall use substituting projection. According to analyses, this double projection
is much more sensitive to changing the origin of the aposphere — cylinder step than to the position of the aposphere.
So, the origin of the first projection step can be modified, to make the two origins the same. This approximation
results a new, substituting projection. However, the difference between the grid coordinates provided by this
method and by the original standard equations, are less than 0,2 millimeters throughout Hungary (the valid area
of the projection). This makes the method applicable not only for GIS applications but also for high-accuracy
geodetic use, too.

It is easy to give parameters for the Laborde-projection to use this approximation: besides the coordinates of the,
now united, projection origin and the scale factor, the azimuth of the central line should be given at the origin,
which is 90 degreed. The case of the Hotine-projection is slightly different: from the False Easting of the origin,
we shall subtract the distance of the origin and the equator along the central line.

B) Substituting the Hungarian EOV grid by Lambert Conformal Conic projection

The Laborde- and Hotine-projections are not widespread used and in some GIS applications, they are not imple-
mented. However, the Lambert Conformal Conic (LCC) projection is very common and known in most packages.
Therefore it is worth to seek a parameter set for the LCC to approximate the EOV grid coordinates. This concept,
first published by Gy. Busics, was that the central line of the LCC projection follows a parallel, which almost follows
the central line of the EOV’s oblique Mercator projection. The difference between these two lines is up to a few
meters in Hungary. In the practice, the origin coordinates and the scale factor defined in the above point A) can
be interpreted as parameters of a LCC projection. The accuracy of this approximation is a few meters in Hungary,
which suits fine the aims of GIS applications.

C) Substituting the Hungarian EOV grid by Transverse Mercator projection in small area

Some GPS receivers (especially the older Garmin ones) allow the user to give the parameters of the Transverse
Mercator (TM) projection, while defining a user grid. It was shown by B. Takacs that — albeit the central lines of
the two projections are perpendicular — it is possible to use position-specific parameters in any area with the radius
not greater than 15-20 kilometers with the accuracy of GIS needs. The procedure is the following:

* To measure by GPS the longitude of a central point of the area, with known EOV grid coordinates (Eggy, Ngov);

* To define a TM projection with the origin at the section of the above measured meridian and the equator, and
with the scale factor of 0.99993;

* To read the coordinates of our selected central point (Ety;, Nry) in this projection;
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* The False Easting and False Northing parameters are:

FE=Egov-Erm

FN=Ngoy-N1ym

D) Substituting the Budapest-centered Stereographic grid by Roussilhe-projection

The problem of the Budapest-centered Stereographic projection is of the same type as it was mentioned in point
A), the double projection, with different origins. In this case, the difference is much more than at the EOV grid.
However, the procedure is the same: we omit the ellipsoid — aposphere projection and giving parameters to the
oblique Stereographic (Roussilhe) projection, based on just the ellipsoidal coordinates of the origin at the second
projection. Because of the larger latitude difference, the accuracy is lower here, however does dot exceed 2 centi-
meters throughout Hungary.

E) Substituting the Czecho-Slovak Kiovak grid by Lambert Conformal Conic projection

The Krovak grid is based on an oblique conformal conic projection, used exclusively in the former Czechoslovakia
and its successor states. Many GIS software packages do not support this projection (or support it just because it
was programmed to handle this very grid). The central line of the projection is east-west directed in the southeastern
edge of Subcarpathia (Ukrainian region, formerly a part of Czechoslovakia). Going westward, it more and more
leans to north. This central line cannot be defined by any other projection, so the approximation can be done only
with considerable error.

It is possible to define different Lambert conformal conic grids for Slovakia and the Czech Republic, with different
parameter sets. As its central line is closer to the original one in Slovakia, here the accuracy is better (average error
is 6 meters, the maximum is 12 meters in Slovakia). This is acceptable for geo-referencing e.g. the 15-meter resol-
ution Landsat ETM satellite images or topographic maps with the scale of 1:25000 or less, but not for more accurate
purposes. The average approximation error in the Czech Republic is 40 meters while its extreme maximum is 82
meters. This enables the geo-reference of 1:100000 scale maps, the 90-meter resolution SRTM elevation dataset
or the 250-meter resolution MODIS satellite imagery.

Finally, if we have no meta-data or reference about the projection of the map to be geo-referred, we have to choose
and parametrize a projection, whose latitude-longitude grid fits well to the one of the original map.

5.4 Sheet labeling system of maps, the geo-
reference provided by the labels

Map systems, covering larger regions or the whole surface of the Earth, are often consist of sheets, covering
smaller parts of the target area. In this case, the sheet labels provide information about the location of the area,
mapped in the respective sheet. Thus we can make a mosaic from them without following the projection or the
latitude-longitude grids. Besides, there are map systems without any grid reference; in this case the geographic or
the projected coordinates of the corners can be calculated from the sheet label.

The borders of the area, mapped in a sheet, are following parallels and meridians, or projection grid lines. In the
first case, the shape of the sheet is an arc trapezoid, while in the second one it is a square or a rectangle. The sheet
number exactly gives the coordinates of the corner points.
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Fig. 25. Map sheet in Hungarian national grid without latitudes or longitudes indicated. the sheet boundary follows
the projection lines.
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Fig. 26. The map sheet boundaries of the Gauss-Kriiger system follow the parallels and meridians.

In Hungary, sheet border of the civilian topographic maps are following the grid lines of the EOV (the national
grid), without any geographic coordinate indicated (Fig. 25). The sheets of the Gauss-Kriiger type military map
system or the old Stereographic system are bordered by parallels and meridian arcs (Fig. 26). If we have not a to-
pographic but a derived map, whose sheet labeling system follows the one of the topographic maps, we can use
the corners as control points, even if no coordinates are given in the map (Fig. 27).

The situation is similar at the sheets of the old (second) military survey sheets of the Habsburg Empire (Fig. 28).
We have no coordinates indicated (Fig. 29) in the nice and detailed 1:28800 scale sheets of the map system.
However, knowing the labeling system and the physical extents of the sheet area in the field, we can easily compute
the grid coordinates of the corners in its native projection. Thus, the sheet corners can be used as control points,
without seeking identical terrain points in the map.

39

http:// www.renderx.com/



Maps and projections

MAGYAR ALLAMI FOLDTANI INTEZET

MAGYARORSZAG FOLDTANI| TERKEPE

=

o ——

Fig. 27. If no coordinates are indicated in a map, the sheet label (here: L-33-XII) can refer to the exact location
of the corners.
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Fig. 28. The sheet system of the Second Military Survey of the Habsburg Empire.

Fig. 29. There is no coordinate indication in the sheet of the Habsburg Second Military Survey,; the geo-reference
is given again by the sheet label (here: ,, Section 50 Colonne XXXII’).
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Chapter 6. Geo-reference of the maps

Geo-referring of the maps and cartographic databases means that we give geo-reference to all pixels of the scanned
raster data. In the beginning, the pixels of the scanned raster image have only image pixel coordinates, valid in the
plane of the image. In this coordinate system, the origin is usually at the upper left corner of the image (this can
be different in some GIS software packages) and every pixel means increases one unit both in horizontal and ver-
tical directions.

During the geo-reference, we define GCPs (Ground Control Points), whose image pixel coordinates and grid co-
ordinates are all given.

6.1 The geo-reference and the rectification

We can follow different ways while defining our GCPs. The common part of these method is that first we have to
define the grid of the target coordinate system: the geodetic datum, the projection type and projection parameters.
It is important that — if it is feasible — the native projection and geodetic datum of the original map should be used,
and not the one that is required for the result. Also, we have to choose the method, the program should use while
fitting the grid coordinate system to the raster image. The most frequently used methods are polynomial ones, with
different orders, such as:

e Linear
* Quadratic
¢ Cubic

In case of the linear fitting, a square grid, usually somewhat rotated, is overlapping to the original image. The
quadratic and cubic methods use second and third order polynomial fitting, respectively. Using these methods,
better fit at the given GCPs can be achieved, however the errors occurring in between the GCPs can be considerably
larger. Besides, these methods need to define more GCPs than the linear one. If possible, choose always the linear
fitting method.

Besides the above discussed polynomial methods, the triangulation-based fit is also a frequent option. It provides
zero error at the GCPs, while the grid in between them is fit using different linear methods in different triangles,
drawn based on the GCP set. Albeit the mathematically optimum accuracy of the method has, the resulted image
is usually somewhat awkward.
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Fig. 30. Selection of ground control points (GCPs) in a map without coordinates: choose known points, here: cities,
with their coordinates.
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Fig. 31. The image and projected coordinates of the selected GCPs. If the magnitude of the fitting error (Column
named ‘RMS"’) is around a few pixels, the fit is acceptable.
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Fig. 32. Result of the rectification: a figure of a geological paper on an elevation model.

How to define the ground control points? The most widespread used, however the most uncertain method is to
indentify some terrain objects in the scanned map and acquire their coordinates from auxiliary databases (Figs 30,
31 & 32). Why the ambiguity of the method? It is because the terrain points are usually less-exactly positioned in
the maps than the geodetic base points, providing the maps’ frame. The positions of the terrain object symbols are
also affected by the map generalization; this could result a positional ambiguity of 1-2 millimeters. Moreover, this
method provide a ‘temptation’ to omit the original projection of the map, which is a considerably error source,
mainly while geo-referring medium or low scale maps.

« If there is a coordinate grid in the map, its crossing points (or the crosshairs, if they are used instead of the full
grid), are the ideal control points.

* Ifno grid lines or crosshairs are indicated, the crossing points of the parallel and meridian lines can be also used.
However, in this case we have to compute the projected coordinates of these points from the geographic ones.
Most GIS packages can do these calculations (if not, this is the only application in the practice, when we do
need the knowledge of the projection equations). Using only the geographic coordinates leads to unacceptably
high errors!

« If even the latitude-longitude grid is not provided, we can use the corner points as GCPs if the sheet label bears
the geo-reference. This is the case of many Hungarian geological or forestry maps, prior to the introduction of
the EOV grid.

* Only if there is no such geo-reference, we can use identified terrain points as GCPs.

44

http:// www.renderx.com/



Geo-reference of the maps

B 1y B licr (el | belln,aarabio cate - de b coste d-arabie - mer-rouge - of - guoliic-de- perse_ 1754, g _|= 5'
Erire Image Enomesd Viss |Chch, lor Pl Coovdnater] Pieterance imager JLoad nin Man Yies Fl]
1 ¥ “E 1t

il :ﬁ: 7 | Pnl.m T wiPain 2
.- 1 == amEs

e e - .. Paint 1 Foint 2

T - (L R e

3 v A

T i

= 1 =

TR S okt | Palnt 4

eea H G e

]
et
FHEHET i+ 7 IO, 1 S0

- nmand Corteol Foant [GCF] Entry - 1 1 e Cortaal Pt §GCF) Propection -

Pl ||J Wl asirgLon |7 Al Pl b Lisd | Geagraphie [Latue/Longhuss) S WESE 7 pe degreet

Pari [0 ¥MeathiegL et [0 Undats Sabsctid Prird | [ St Frcpction |

G Comiiel Mﬁlm&ta oo i Corstil Pl - -- = .

| | [ | k===
¥ | Proected Proected ' Lerrgphuds Labhei Ern Dot

BFPee| M08 FAM0Y 12 RARANS 300000000000 32 BAGANTF 30 00000000 M TR 10 1645 = ok

FPed? 1ESI0R ESOL GFENRATNS 0NN 57 ENESNTE TN fR ]

BElPetd  SEIST VR0 A7 ESRSTNS 10 000N 37 BSOS E V0 0T N FEATYI Y e | Cancal

ElPotd VAR 13047 57 ERSADRS 10 (00NN 57BN E V0T N ETIRER 4B Help

Fig. 33. As our map contains coordinate or latitude-longitude grid, its crossings provide the best GPCs. Here:
because of the usage of Ferro prime meridian, the longitude values are nor round numbers. The fitting errors are
too high because of the ellipsoidal coordinates given for the GCPs.

As the control points are defined (and switched on) in the rectification algorithm, the software provides their errors:
the horizontal difference between their defined position and their calculated position based on the fitted grid (Figs
33, 34 & 35). The error is usually given in pixel units; errors below one — or, maximum two — pixel(s) can be ac-
cepted. In case of historical maps, the acceptable error range can be somewhat higher. However, if we have blunders
at some or more GCPs, first we should check, whether we typed wrong grid coordinates or changed the easting
and northing values. If the error still remains, check the identification of the used terrain objects. The dislocation
of the GCPs is also important: they can’t be in or near one line in the map. The aim is to have 4-6 (in case of
quadratic or cubic fit, much more) GCPs, well spread in the map area and with low error.

B Ninaye Hee Ddier fHehoe T belln aarabio cate de bs coste o arabie mer-rouge ot -golie-des perse_ 1754, g

=12l

Erise image Enomesd Wiss |Ohch, lor Pl Coovdnater] Pielevence Images [Load inin ban Yies Finl]
1 ¥ “E Tt
T :ﬁ.: 7 | {Palnt1™— o Pl ?
Ja1r1 I 11 . P 1171 r .
g o e o Poimt 15 Poim &
= ¥ M yonn
mEa g L
2 T S
1 } o b
i 1 ¥
H " Paint 7| Point 4
5 R A
ERE
et
FHEHET i+
- rmand Cortecl Foant [G0F] Entry - Gnieared Cortecl Fowt JGCF]) Progetion
Praed ! ID Wl asirgLon |7 Bkl Pl b Lk Maipaton S WGEE J maieny
Pari [0 ¥ MNiesthegiLat [0 Upedate Sakoctisd Poird | Sinlect Ficjecction |
~ i Cortsel Mﬂm&ﬂ-u Comter s Corsveal P |- -- = .
W Longhee | Lobhe | Ence | Do I ._.E._._.l
FPae| M08 A0S BONGTIT MANSIGES 3P BANANTE 3000000000 N 158 11 65 0060 == Bophy
BlPeet? 1SA0P FROL EEEVEIONT CMENENONS G7ERNANTE O (OONOT N 074028073
= T SHEIN 1EIE S1SEHINE O INMEMANE 3T EREELTE 10 (KIEEEEEr N A19M0E, 20 Concel
Bl Pei & TEAE 13047 REEETEIONT TMI4MANEE 57 ERESETE 10 (OEENEET N 212N3E 73 Help

Fig. 34. The ellipsoidal coordinates are transformed to projected ones (here: in Mercator projection), and the
errors are almost eliminated.

The next step is the rectification. This is a resampling method: the computer puts the grid, calculated from the
image and grid coordinates of the GCPs, on the image and gives the raster values in this new image from the ori-
ginal one. The result is a raster image, whose rows and columns follow the east and north directions of the target
grid. The resampling itself can be done by three methods:
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* Nearest neighbor (NN)
e Bilinear
¢ Cubic convolution

The NN methods means that the pixels of the result image obtain their values from the original image pixel, whose
center is the nearest to the target pixel center. This is the fastest procedure of all the three ones. This algorithm
guarantees that there will be no other pixel values in the resulted images than they were represented in the original
one. Therefore, if the pixel values refer to categories (e.g. classes in classified images) we shall choose this method
for the rectification.

Google carl

Fig. 35. Result of the rectification: the 1754 map of Arabia by Bellin (credit: David Rumsay Map Collection) on
the Google Earth. Errors indicates the accuracy of the survey behind the map.

The bilinear algorithm means that the target pixel value is given by a bilinear interpolation, based on the original
pixel values around it. This is the advised method, when the resolution of rectified image is considerable higher
than the original one.

The convolution method provides the target pixel values based on territorial averages of the pixel fragments con-
nected to them in the original image. In case of images with continuously varying pixel values (e.g. scanned images
or satellite imagery), this method provides finer but slower solution than the NN-resampling, if the target pixel
size is around or larger than the original one.

The GIS software packages stores the position of the resulted image in its coordinate system, usually in their own
format. However, there is a quasi-standard description format, known by many GIS packages, this is the World
File. The World File can be used to describe the position of TIFF or JPEG-type images, or even of compressed
files e.g. MrSID or ECW. The very simple structure of this file is the following. It contains six values:

» The Easting increase while step one pixel to the right

* The Easting increase while step one pixel down

The Northing increase while step one pixel to the right

The Northing increase while step one pixel down
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 Easting value of the upper left image corner
» Northing value of the upper left image corner

There is no absolute rule for the file extension. For a JPG image, it is a file with a same name and an extension of
JPW or JGW. For TIFs, it is TFW, for SID, it is SWF. The World File does not contain any meta-data: neither the
map grid and datum, nor their code are not stored. Therefore we have to know ourselves these pieces of information.
Also, we have to mention that using the first four data segments, the rotation of the coordinate frame can be also
handled.

As a metadata, the target coordinate grid and geodetic datum should be stored for the rectified (resampled) image.
Using this, the GIS packages are able to convert to another map grid, assuming that its projection and datum
parameters are known to it, according to the Chapters 4 & 5.

Example: let’s assume that we have a map in the Warsaw Pact Gauss Kriiger (Zone 34, Pulkovo 1942 datum) grid,
and we need to convert it the the Hungarian EOV system. The following steps are to be taken:

1. set the coordinate system for the ground control points (Pulkovo 1942 datum, Gauss-Kriiger Zone 34 grid);
2. define the ground control points with their grid and image coordinates;

3. rectify the scanned image to the Gauss-Kriiger coordinate system, and

4. transform the result image to the EOV coordinate system.

We shall discuss again, that it would be incorrect, leading to considerable error, if we used GCPs with EOV grid
coordinates. In the Gauss-Kriiger system, the points of the lines, that are straight in the EOV system, form curves.
If our target area is relatively small, e.g. a few kilometers, this is almost undetectable. However, at several ten or
hundred kilometers distance, this deflection could be up to several ten meters and cannot be corrected or calculated.
Following the above steps a)-d), this error can be avoided.

6.2 The projection analysis and the deliberate
selection of projection

In many cases, we don’t know the exact projection of a map or scanned cartographic database. However, when
rectifying them, we shall define a coordinate system. For this we shall look up, or, if this is not feasible, we shall
estimate the projection type, the projection parameters, and, if needed, the geodetic datum.

Before declaring the coordinate system of a map unknown, we shall try to look up its metadata in the literature.
We can seek for references in the text of the map frame (Fig. 36). In some cases, the projection type is given, while
the parameters are not. In many cases, we find a reference to a national grid, without its details; we can seek for
detailed reference in textbooks or by internet search. Topographic maps are hardly made in ‘unresolved’ coordinates
systems (however, the 1980°s Hungarian hiking maps provide interesting exercise for the analyzer). The national
grid and its datum of the area provide always a good starting point, even it is not referenced. If there were more
standard grids of the country in the questioned time frame, all of them are worth to try. Sometimes the sheet labeling
system helps to select the correct projection.
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Fig. 36. In many US topographic maps not only the projection type (here: Lambert Conformal Conic) but also the
projection parameters (here: the standard parallels) are given. Lucky case!

For example, the possible coordinate systems of a map or cartographic database in Hungary are: EOV, Gauss-
Kriiger grid, Budapest-centered Stereographic grid. The EOV has been introduced in 1975; therefore prior to this
date there were no maps in this system. The Gauss-Kriiger grid was used even for civilian purposes from the 1960s.
However, the coordinate system was secret: in these maps there are either no coordinate reference (the geographic
coordinates of the corners can be computed), or a Stereographic grid is provided. If the sheet label starts with ‘L/M-
33/34’ (the dividers mean alternatives), the map is in Gauss-Kriiger system. The sheet label of the 1:75000 scale
Stereographic maps is of four digits. The label of the 1:25000 sheets of this system is completed by a hyphen and
a number 1-4, the geographic longitudes are often given from the Ferro prime meridian. The above mentioned
Hungarian hiking maps are in Gauss-Kriiger system but they are rotated to magnetic north and their kilometer
grids follow no standard system.

If the area of the map with unknown projection is small, it is practically not important, which projection is selected
for the rectification. Within 10-20 kilometer distances, the deflections are not exceeding our aimed accuracy of
about 5 meters. In this case, the selection of the geodetic datum is important; one base point is enough for its
parametrization (see Point 4.5). The size and shape of the ellipsoid is not really important, its dislocation should
be set to optimum horizontal fit.

If the scale of our map is low, and it shows a relatively large area, the situation is lucky from a point of view, that
the accuracy of the map reading, the half map millimeter represents several hundred meters on the terrain. Therefore,
and projection can be selected that approximates the real map projection with this, very large, error margin. Besides
several hundred meters of accuracy level, the selection of the geodetic datum is either less important. For the se-
lection of the projection, we shall analyze the latitude-longitude grid.

In mid-latitudes (e.g. in Europe), the latitude lines in the overview maps are often more or less concentric circles,
while the meridians are more or less straight lines, pointing to the pole, while the angles between them are equal
to each other. In this case, we can use a Lambert conformal conic projection, even if it is not the native projection
of the map.

A common error is, when the rectification is made by geographic coordinates of the cross-sections of the parallels
and meridians. This is an incorrect procedure, resulting large errors. The correct procedure is to analyze the latitude-
longitude grid, estimate a projection type and estimate its best parameter set. Upon completing this, the coordinates
of the cross-sections should be transformed to this newly defined projection for ground control point definition.
When we use the real projection of the map, the rectified result is a rectangular image, without distortion at the
corners (Figs. 37 & 38). In case of small-scale maps, the geodetic datum selection is not important.
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Fig. 38. The map of Lipszky (1810): the geo-referred map is an exact rectangle, the yellow zone around it is the
envelopping arc trapezoid.
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Chapter 7. Vertical geo-reference

In the above chapters we discussed only the horizontal position and geo-reference of the distinct points. In these
calculations the vertical position of the points had no role. Indeed, the vertical location of the points hardly has
influence on the resulted horizontal coordinates. The effect is less than a centimeter within the several hundred of
kilometers of altitude, and this is much more than any elevation that occurs in the Earth’s surface. Therefore, we
neglected this question in the horizontal geo-reference.

There are, however, certain GIS applications, where the vertical position of the points is also important, besides
their horizontal dislocation. Moreover, as it is shown in a future chapter, there is one such application — the ortho-
rectification of the aerial photos — which definitely needs the vertical coordinates of the control point, because its
image geometry. In this chapter, we summarize the knowledge, necessary for determination and interpretation of
the vertical position.

7.1 Ambiguities in height definition

To define the spatial position of any point, we have to give three, linearly independent coordinates. This can be
done either in a three-dimensional XYZ (Cartesian) or in polar coordinate systems. For example, the inner algorithms
of the GPS system uses the first, the Earth-centered Earth fixed (ECEF) XYZ system. If the orientation of the co-
ordinate axes is unambiguous, so is the location of the points characterized by them. However, as the Cartesian
coordinates can be seldom interpreted by the average user as geographic information. Therefore, in the practice —
partly because, as it was mentioned earlier, the real geo-centered position of the coordinate systems was impossible
for a long time — the horizontal and vertical positions are given separated. For the GPS user, the system transforms
the Cartesian coordinates to geographic (ellipsoidal) latitudes and longitudes on the WGS84 datum, and the elevation
above the WGS84 datum ellipsoid.

The shape of our Earth is not an ideal sphere, so the determination of the elevation can be done in many different
ways. As is was discussed in the Chapter 3.2, the real shape of the Earth is the geoid, a level surface of the sum-
marized force fields of the gravity and the centrifuge, connected to the mean sea level. The geoid can differ from
the best fitting ellipsoid vertically (geoid undulation) and the maximum of this difference is cca. 110 meters (Fig.
39). In the reality, the geoid does not fit to the sea level exactly, because of the thermo-saline differences and
streams, and the typically low and high pressured meteorological zones. The vertical difference can be up to 2
meters. The elevation data shown in the topographic maps are results of precise levelings. However, because of
this ambiguity it is important that which coastal point was the start of these levelings. Moreover, because of the
crustal movements and the plate tectonics processes, the surface points are in constant movement, not only in ho-
rizontal but also in vertical sense. This movement causes detectable and measureable distortion in the mutual pos-
itions of the base points.
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Fig. 39. The topography, the geoid and the ellipsoid.

Because of the above facts, the ’elevation above the sea level” of the point is not a fixed data. What would be un-
ambiguous, it is the potential value of the gravity field and its difference from the pre-defined potential value of
the geoid. The potential, however, cannot be directly measured, and even if we determine it, its conversion to
height value can be done only approximation: the level surfaces are not parallel to each other, so the vertical distance
of two level surface varies from place to place, even in very small order (Fig. 40).

These are the ambiguities and processes that mar the clarity of the determination of the height measurements *above
the sea level’.

Fig. 40. Following different paths, the result of the leveling is different (Gy. Busics, 2012).
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7.2 Height definitions, elevation measurements

Height above the ellipsoid and above the sea level

Because of the ambiguities, discussed in the above point, the elevation can be defined in multiple ways. The first
and most important is to discriminate the elevation above the ellipsoid and the elevation above the sea level (geoid).
When we talk about the elevation above the ellipsoid, it always concerns the elevation above the WGS84 specific,
Earth-fixed ellipsoid.

The difference between the above two elevations is the local geoid undulation value. This can be between +100
meter and -110 meter, in Hungary, it is between 39-46 meters. Therefore the difference is significant and the res-
ulted error of the incorrect application is high enough to be unacceptable in any practical applications.

The difference becomes obvious, when we measure at a summit with a known height with a GPS that shows the
elevation above the ellipsoid. For example, the top of the Gellért-hegy hill in Budapest is 235 meters above the
sea level but a GPS (if there is no built-in geoid model) shows systematically the elevation values around 278
meters. The difference is equal to the know geoid undulation value in Budapest, which is cca. +43 meters.

Realizations of the elevation above the sea level

The standard measurement of the elevation above the sea level is made by geometric leveling along the leveling
lines and by measuring the gravity acceleration connected to the points of the leveling. From these data, the difference
of the potential between the endpoints of the line can be computed without any assumption:

(7.1)

In the Equation (7.1), the g; measured gravity acceleration values are determined along the leveling line, while the
Ah are the elementary height differences are determined geometrically by local leveling measurements. If an endpoint
or any point of the line (or a network consisting of multiple leveling lines) is on the sea level, the geopotential
value can be given with respect to this specific point. Although it is an unambiguous value, the geopotential number
cannot be applied in cartography. The elevation of the point can be estimated by dividing the geopotential value
by the ’characteristic’ gravity acceleration value along the section below from the point to the sea level:

(7.2)

however this calculation needs assumptions. In spite of Equation (7.1), here the acceleration values are interpreted
not along to leveling line but along the plumb line beneath the point. These values are not measured, so we can
use theoretical models for practical use.

Determining the orthometric height, the *characteristic acceleration’ in the denominator of the Equation (7.2), is
estimated by specific models. Interpreting the results, we shall know that the points with the same orthometric
heights are usually in different level surfaces. The base level of the orthometric height is the geoid.

In case of the normal height, the *characteristic acceleration’ is derived from the normal formula of the Earth’s
gravity:

(7.3)

where the latitude of the measured point have to be taken into account (here Veq is the gravity acceleration in the
equator, f and f; are constants defined in the used geodetic system. The result is further corrected using the known
effect of the elevation to the gravity acceleration. The base level of the normal height is the so-called quasi-geoid
or co-geoid. As the difference between the orthometric and normal heights of a point is not so high (usually a few
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centimeters in flatlands and hills but can be up to two meters in the steep slopes of the high mountains), the height
difference between the geoid and the quasi-geoid is also in this small range.

Introducing the dynamical height eliminates the latitude dependence of the normal height. At the calculation, instead
of the normal acceleration at the latitude of the point we use the acceleration value of the 45 degrees latitude,
simply substituting ®=45° in the Equation (7.3).

The orthometric, the normal and the dynamical height are all the realizations of the elevation above the sea level.
Their vertical difference are usually insignificant for any GIS application or analysis. Here we shall note again
that the incorrect use of the elevation above the ellipsoid and above the sea level results a much significant (thousand
or ten thousand times higher) error.

7.3 Ambiguity of the sea level: vertical datums

As it was mentioned above in the Chapter 7.1, the real sea level does not follow exactly the level surface defined
as geoid. In the geodetic systems, the geoid is defined by the potential value of this level surface. The sea level
can differ from this even by two meters. The difference is characteristic as a time-average from place to place,
while temporal variations can be also detected.

Because of all of this, the definition of ’sea level’ or ‘mean sea level’ is quite complex. The sea level is measured
by mareographs: they record the water level at the point as a function of the time. The null points of the mareographs
are ad hoc placed vertically. The real geopotential values are rarely determined therefore the read values at different
mareographs — however their connections can be analyzed statistically — are not in direct connection. As it was
above mentioned, the temporal trends of the read values are affected by the global — and in case of the inner seas:
the local — sea level changes and the regional crustal movement of the area the mareograph is placed in. The first
affects the real values while the second modifies the geopotential value of the local null level. The sea level is
defined by the elevation data read at all mareographs, together with the horizontal position of the instruments as
well as the vertical situation of their null level. The sea level can be interpreted for different time intervals (epochs),
as the temporal average of all measuring points (e.g. mean sea level of 1905-1910).

In the practice, the leveling network is connected to the mean sea level at one (or more) pre-defines point. For ex-
ample, the height network of the Austro-Hungarian Monarchy was set to a mareograph that was working (now
abandoned) at the Molo Sartorio in Trieste (now Italy) at a given epoch (Figs. 41 & 42). The military cartography
of the late Warsaw Pact used a null level connected to the Kronstadt mareograph near Leningrad (now: Sankt-
Petersburg, Russia). The null level of the height system of the European Union is connected to the Amsterdam
mareograph. In case of land-locked countries, such as Switzerland, the Czech Republic or Serbia, any land base
point can be used as starting elevation data. In this case, of course, this value is not zero. For example, the also
land-locked Hungary selected one of the eight fundamental elevation base points of the former Monarchy at Nadap.
Besides the old point, a new one was set up in 1951, connected to the new elevation network (Fig. 43), the "Hun-
garian zero’ level is positioned beneath this point, with a distance given by tenth of millimeter accuracy (Nadap
base level).
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Fig. 42. The Molo Sartorio in Trieste in 2003, with the old position of the mareograph that was the null elevation
of the Austro-Hungarian cartography (by courtesy of G. Mélykuti).
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Fig. 43. The new point at Nadap (in the middle) and the old point's location at the hillslope (on the left), the fun-
damental point of the Hungarian elevation network (Gy. Busics, 2012).

In the topographic maps, besides the horizontal reference (the geodetic datum), also the vertical system, the so-
called vertical datum should be given. Usually this refers to a null level of a mareograph and, if applicable, the
epoch. In case of Hungary, the ’Adriatic system’ (connected to Trieste) and the ’Baltic system’ (connected to
Kronstadt) are the examples, and as it was mentioned, both are realized as (different) heights from the Nadap base
point. In vertical terms, the vertical difference between different vertical datums can be interpreted as constant for
practical use. Because of the ocean streams, the salinity differences and the evaporation surplus of the Mediterranean
Sea, the level of the Baltic sea is physically higher than the one of the Adriatic Sea. The difference is 67.47 centi-
meters, this value should be subtracted from the elevations given in the Adriatic height system to get the elevation
in the Baltic system. When Hungary started to use the Baltic level instead of the Adriatic one, in the later (mainly
at the end of 1970s) issued touristic and hiking maps, majority of the summit elevations were decreased by a meter.
As the decrease is less than one meter, according to the rounding rules, the decrease does not occur in every case.
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Fig. 44. The leveling lines between Trieste and Nadap and the adjoining parts of the Habsburg leveling network.
The lines follow the railroad network.

Similarly to the horizontal geodetic datums, the realization of the vertical datums can be made by a system of base
points. The vertical datum is characterized by the physical location of the base points, as well as their fixed elevation
data. In some national systems, where the regional crustal movements are very high (e.g. in Scandinavia), the av-
erage annual uplift or subsidence values are also indicated. The elevation of the surrounding terrain points can be
determined from a nearby base point by local survey technology. If the vertical point network consists of many
points, it is divided to sub-networks, according to the leveling technology of their points. The accuracy of the
network, however, is mostly determined by the creation method and accuracy of the first-order vertical network
(Fig. 44).

The elevation correction — the simple difference making — between the different vertical datums, especially the
sign (direction) of the shift, should be accomplish with special care in case of construction of such objects (bridges,
tunnels), whose endpoints are in different countries using different geodetic datums. Nowadays, the European
height standard is connected to the Amsterdam mareograph. The local elevation differences from this level are
shown in Fig. 45.
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Fig. 45. Differences in centimeters between the European null level (the Amsterdam gauge) and the local elevation
zeroes (Adam et al., 2000).

Finally it should be mentioned that as the three-dimensional data collection techniques are spreading, the unification
of the divided horizontal and vertical databases and networks is expected. The cause of the still-characteristic division
is mainly the different methodology and accuracy in the physical-geodetic realization of the horizontal and vertical
references. The geodetic use of the GPS this difference is decreasing and eliminating, the determination of the
horizontal and vertical positions is unified, based on the same physical theory and geodetic practice.
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Chapter 8. Terrain and elevation models

In this chapter we show the organization of the vertical data — used for geo-reference — into spatial models. We
don’t aim to discuss the subject in depth of the extent literature of the terrain and elevation models. However, it is
necessary to introduce the definition and model types at a level that is a good overview for the reader involved in
GIS and especially in the geo-reference and the ortho-rectification of aerial images (Chapter 9).

8.1 Definition and types of the terrain models

In general, we call elevation model any procedure that is able to estimate the characteristic elevation of a surface
at a point, defined by its horizontal coordinates. The quality of the model depends on the accuracy of this estimation.
In this definition the surface can be any three-dimensional layer, however, in the GIS technology we usually
model the terrain elevation, the relief, which is also displayed by the contour lines in the topographic maps. In this
case, our model is called terrain model.

Fig. 46. The Voronoi diagram (red): connects the centers of the circumcircles of the original triangles (Wikipedia).

The terrain model can be of two kinds: vector or raster-based. The vector model expresses the irregular spatiality
of the data sampling. It is based on elevation data at an irregular horizontal point set, on coordinate triplets of 3D
spatial points. The elevation can be estimated between these points by some interpolation method. The easiest and
most used way to do it is the application of the triangulated irregular n network (TIN). We lay an ideal triangulation
net to our point set. In the practice, *ideal’ means that the sum of all triangle edges should be minimum at the whole
network (Fig. 46). This way, we can arrange one and just one triangle to any point of the interpretation range on
the base plane, or the point itself is an original network point. Using the planes (or any more complex but unam-
biguous function) fit to the different triangles, we can estimate any for any horizontal point on the interpretation
range.

For our discussed practice of the geo-reference, the rectification of scanned maps and datasets requires the raster
data model. This makes necessary the application of the raster variants of the elevation and terrain models. It is
quite easy to estimate the elevation values at the points of any selected raster net, using the above mentioned TIN-
based models. For shorter software runtime and the data-level compatibility, these raster grids are usually not
realized by dynamic queries. It is easier just once to fill a raster file with data, by the TIN—GRID conversion.
According to the direction of the conversion, the information content of the resulted elevation or terrain model is
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less than the one of the original triangulated network: the original network cannot be reconstructed from the grid
data. In the followings, we discuss these grid-based, raster models.

8.2 Making and characteristics of the raster-
based terrain model

The raster terrain models can be constructed by using the following input data:
* Original field leveling data

* Map contours

» Stereo pairs of aerial photos

» Radar-based elevation of interferometry data

* Lased-based elevation or range (LIDAR) data.

The original field levelling data is a three-dimensional point set, which was surveyed by field measurements in
some vertical datum (vertical network). The points, of course, are in irregular network in the horizontal plane. The
contour lines of topographic maps were drawn using these data, prior to the widespread use of the stereo photo-
grammetry. In the practice, this kind of data is rarely used. After design and print of the final contour maps, their
working material, such as the original field protocols and the derived point lists were often lost.

The map contours (the lines connecting the terrain points with equal elevation) were designed and drawn using
the mentioned field surveys, or later by the procedures of the below discussed stereo photogrammetry. Their in-
formation content is less than the one of the original field data. The manual or automatic digitalization of these
contours provides again a three-dimensional point list: for the horizontal position of the digitized points we couple
the elevation value of the contour line. This point set can be interpreted as a model of the original field leveling
data. A raster elevation model can be constructed similarly, by TIN—GRID conversion. However, the contour-
based elevation models are distorted by three kinds of errors:

* In the sharp curves of the contours, there are one or more triangles in the irregular network, whose vertices lie
on the same contour. The modeled elevations of all points of these triangles are in horizontal planes. Therefore,
along the ridge lines, a ’virtual plateau’ occurs, which is not existing in the real terrain. Thus, in the histogram
of the terrain model has peaks connected to every contour elevation.

» If we don’t digitize enough vertices along the long, straight sections of the contours (the point interval is less
than the distance of the neighboring contour), and it is not even densified later by automatic methods, then the
edges of the irregular triangulation network does intersect the contours in some places. The result is a *fishbone
pattern’ at the top or the bottom of the displayed slope (Fig. 47).

 In very flat terrains it is a frequent situation as only one contour is crisscrossing through an extent area. Even
we digitize thoroughly this line, following the complex structure of oxbows and point bars of a floodplain, the
result will be a single, horizontal plane. The original fine relief can be attenuated by virtual auxiliary contours,
following the small ridges and valleys.
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Fig. 47. 'Fishbone-like’ errors along oxbow patterns in an elevation model: result of a digitized contors when the
vertices are too far from each other.

The above errors can be handled by entering auxiliary data of other pieces of information into the system. At the
ridges, we can define the ridge lines themselves. At the valley lines, digitizing the streamlines means such relief
information, which decreases or even fully eliminates the above false effects. The most parts of the Earth’s surface
is formed by stream erosion. According to this, there are algorithms providing "hydrologically correct’ terrain
models. These algorithms — assuming that the water runs off from all surface points — correct most of the above
problems. If our assumption for the surface runoff is true, this terrain model will be the closest one to the real relief
and the result in correct also in hydrological applications.

However, in the territories, where this assumption not true, or not even almost true, the resulted model can be of
varying quality, sometimes even very bad. Karstic regions with gullies, dolinas, underwater creeks, or an area with
many outlets (wind-formed sandy regions, or floodplains with oxbows) are killing the quality of the *hydrologically
correct’ models.
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Fig. 48. Stereo photo-pair: if our eyes are focusing to the infinite seeing this, the image appears in 3D.

In the case or stereo photo pairs, the elevation information of the area is represented by the different distortion of
the two aerial photos, taken from different positions and angles (Fig. 48). These distortions are primarily realized
by the mutual image position of the base points of the horizontal geodetic and/or elevation networks (whose co-
ordinates are well-known both in horizontal and vertical sense). Other terrain objects with unknown geodetic pos-
ition can also be identified in both images, which gives auxiliary information for the above pieces of information.
The result of the aerial triangulation was mostly a contour map — and we can derive the grid model according to
the above mentioned procedure. With the advance of the computer technologies, however, it is sometimes possible
to make a raster terrain model directly from the photo pairs and the detected points on them. For this procedure,
not only aerial photos but also satellite images (better than mid-resolution, e.g. the ASTER data) can be processed.
It should be mentioned that the identified and paired image elements correspond not necessarily to the terrain but
they can be in elevated positions (vegetation, buildings). These ones can be omitted, or if we use them all, we shall
recognize the resulted dataset not as terrain but elevation model, containing these elements, too.

The radar technology is connected to the terrain modeling in two different manners. The here only mentioned but
not discussed radar-interferometry primarily detects the vertical movements of the surface. However, the radar-
based altitude measurement is capable to determine directly the distance of the terrain or terrain objects from radar
source and detector, which should be in known position with respect to the Earth. This is the technology, which
revolutionized the availability of the digital elevation models in the early 2000s, giving a huge push to any research
that needs these data sources. The radar was invented to follow the position of aircrafts from the surface by elec-
tromagnetic rays propagating through the relatively dense atmosphere the Earth. However, the reverse way is also
possible to detect the surface from board of the air- and spacecrafts with localized radar beams. This ability was
clearly shown by Zoltan Bay in 1946, who measured the distance of the Moon by radar experiments. In 2003, using
a source and detector pair placed on board of the Space Shuttle Endeavour, the majority of the Earth’s surface was
surveyed, resulted in the Shuttle Radar Topography Mission (SRTM) dataset. This model became the most used
elevation dataset worldwide, primarily because of its free availability and globally unified characteristics. According
to the used technology, the partial effect of the built environment and the vegetation is in the data. Nowadays, the
cca. 100 meter spatial resolution is considered to be quite low, however at the time of the publication of the dataset,
it brought a real breakthrough for a wide spectra of the sciences.

To improve the resolution, the newest of the discussed technologies, the LIDAR should be applied. The laser range
measurement became a part of the toolbox of geodesy in the last decades, after the invention of the portable lasers.
The most up-to-date application, the laser scanning is based on the scanner that is capable to alter the direction of
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the laser beam in a pre-set range and to record the backscattered signal. First because of the huge amount of this
data, this application is widespread used only in the very last decade. The laser scanner can be applied in the field
and can be also mounted onboard of aircrafts. Its satellite application is limited because of the atmospheric scattering.
The laser signals are reflected back from the buildings. Because of the high density of the measurement points (up
to several points per square meter), there are soil-reflections even while surveying of vegetated area. The high
resolution of the method is ideal for surveying the micro-topography of near-flat terrains.

The quality characteristics of the raster-based terrain and elevation models are:
» The horizontal resolution (pixel size);

* The numerical representation of the elevations;

» The vertical accuracy.

If the source is a contour map, we shall also give:

* The scale of the original map

» The regular contour interval of the original map, as well as the smallest contour interval (halving and/or auxiliary
contours).

It should be underlined that the numerical representation and the accuracy of the elevations are not the same. The
representation (e.g. ,,integer”) shows the smallest elevation difference (e.g. one meter) that can be represented in
the model. This is not the same to the accuracy of the elevation estimation (e.g. 3 or 5 meters) that is based on the
whole technology chain led to the elevation model. Of course, the representation should be finer than the accuracy,
otherwise the representation itself mars the accuracy. The raster-based elevation models are images, whose pixel
lines and columns are parallel to the axes of some geodetic or projected coordinate system. This coordinate system,
and the place of our image in this system are also very important pieces of meta-data of the terrain or elevation
model.

8.3 Availability of the terrain models

There was a long period, when the national geodetic/geoinformation data providers offered the elevation models,
developed on the base of contours their own topographic maps. Nowadays, the availability of models, resulted
from laser scanning is more and more frequent. These models show the elevation in the horizontal coordinate
system of the given country, and similarly, the elevations are represented in the local vertical datum. The quality
characteristics are also determined by the technology level of the providing country and by the scale and quality
of the available topographic maps. In most cases, the accuracy and the resolution of the laser scanned models are
better than the ones of the contour-based models. However the national data providers are constantly working on
actualization and quality improvement of their data, there are no such data available for the huge majority of the
Earth’s surface.

The situation is different, and sometimes surprisingly better in case of the medium-resolution terrain models. Dif-
ferent international groups were formed in the 1990s to compile global models using the local ones. At the end of
the last millennium, such datasets (e.g. the GTOPO30) were issued and widespread used. However, according to
their edited/mosaicked being, the data quality of these models are heavily varies from place to place. The situation
was fundamentally improved by the Shuttle Radar Topography Mission (SRTM) dataset, published in 2003.

This program was started in 1996 by the American NASA (National Aeronautic and Space Administration), aiming
to mapping the relief of cca. 80% of the Earth’s surface, using a radar system, onboard of the Space Shuttle (Fig.
49). After some delays, the space shuttle Endeavour has been launched in 11 February, 2000, onboard with all
necessary instruments for the measurement. The whole survey campaign lasted 11 days. The space measurements
were completed and supported by extent surface GPS-measurements as well as placing many (around 70 thousands)
artificial radar reflectors at pre-set positions, to provide geo-reference. The data processing took 18 months, led
by the NIMA (National Imagery and Mapping Agency) of the US Ministry of Defense. According to the agreement
between the NASA and the NIMA, with the permission of the NASA, the dataset is archived and published by the
USGS (United States Geological Survey).
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Radar beam

Fig. 49. The settings of the SRTM measurement onboard of the Space Shuttle.

In the frame of the project, the digital elevation model of the mapped area was completed in two different resolutions:
the pixel size of the finer version is one arc second (available publicly only for the territory of the United States)
while the general version has the pixel size of 3 arc seconds (cca. 90-100 meters is mid-latitudes). Thus, such a
public database was created, whose existence and use should be known for any specialists, working with geo-in-
formation technology (Fig. 50).

For the measurement, onboard radar equipment was used. As the orbit inclination of the space shuttle in the exper-
iment was 57 degrees, it didn’t fly over the polar regions. In the frame of the SRTM program, therefore, was
between the 601 degrees of northern and the 57t degrees of southern latitudes. For example, the database is not
covering Finland; its topography is not available in it. The resulted 3-arcdegree resolution data is available for
everybody on the Internet. The latitude-longitude grid follows the parallels and meridians, the horizontal datum
is the WGS84. The elevations are interpreted above the level of the EGM96 global geoid model.
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Fig. 50. The elevation model of the Székely Land (eastern Transylvania) in the SRTM dataset.

While using the dataset, we shall keep in mind that it was constructed with radar technology. We have uncertain
signals from water surfaces (because of the unavoidable waves), so at the seas, lakes and rivers, we have false data.
Majority of them was filtered out during the data processing, and these pixels have NULL cell values. Similar
NULL value have been arranged for many mountainous pixels, mainly in deep valleys, which were in radar shadow,
according to the survey geometry, and we don’t have radar backscatter signal from. This kind of data absence is
more frequent in the high mountains. If necessary, the missing data can be completed from other, lower resolution
models. The 5.6 centimeter wavelength radio signals are not penetrating the dense or even the medium foliage
and, of course, scattered back from the solid roofs or walls of the buildings. Thus, the elevation values of the
model represent the geoid height of the layer that is the reflector for the 5.6 centimeter wavelength electromagnetic
signal. In the regions of cities or forests, the effect of the buildings and the trees is in our data.
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On the Mars, the thin atmosphere enables to survey the surface elevation by laser altimetry. The resulting MOLA
(Mars Orbiter Laser Altimetry) project provides an SRTM-like elevation model with a horizontal resolution around
half kilometer, of course without any artificial of vegetation ‘noise’ (Fig. 51). In the last decade, the altimetry of
the Mars has been significantly improved.

Fig. 51. The southern foreland of the Huygens crater in the Mars, shown by the MOLA elevation dataset.

8.4 The effect of the built environment and the
vegetation: elevation models

As it was earlier discussed, some technologies of the elevation model creation cannot discriminate — or only with
serious post-processing — the height of the soil, the vegetation and the buildings. And, as it is shown in the next
chapter, for the ortho-rectification of the aerial photographs, these pieces of information are also needed to handle
the effects of the partially oblique-photographed buildings. Therefore, besides the terrain models, showing the el-
evation of the terrain itself, elevation models that represent the real photographed surfaces, are also needed. Their
construction can be made in two ways:

* The terrain model can be over-written by the elevation of the estimated, modeled height of the vegetation and
the buildings. The built objects can be modeled by some three-dimensional prism or a combination of prisms.
The vegetation effect is represented by an added constant elevation, characteristic for the plant species (forest
trees, agriculture crops). This method is somewhat similar to the "railroad model’ toys: we add the extra elevation
of the objects to the already existing terrain model.

* The elevation model can be directly computed from laser scanned (lidar) data. The active reflecting surface can
be any solid object (building roof or walls, foliage of forests). Using post-processing algorithms, the elevation
model can be provided from the original three-dimensional point set that is the result of the laser scanning (Fig.
52).
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Fig. 52. Artificial objects (roads, railroads, dykes) in a Hungarian flatland, shown in a lidar-based elevation
model (Zlinszky et al., 2012).

It should be mentioned again here, that the above discussed SRTM elevation model contains height elements referring
to the vegetation and the built environment. However, in this dataset, the systematic difference of the model height
and the terrain height refers only to the extents of the towns and forests, and this vertical difference is far from the
real surplus. Thus, the SRTM cannot be used as a certified elevation model.

In the practice of the geo-reference, the elevation models are raster-based datasets. This always causes some
model errors, whose order of magnitude is depending on the horizontal resolution. The raster model cannot correctly
describe the vertical walls and forest-boundaries in three dimensions. However, this ambiguity causes only subpixel
registration errors at geo-reference of aerial photos and ultrahigh resolution satellite images. This small error is
much more insignificant than the one occurs when no elevation model is used.
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Chapter 9. Ortho-rectification of aerial
photos

The basic geometry and distortion are considerably different from the ones of the maps and map-based raster
datasets. Maps are made to show the downscaled version of the landscape in a plane, projected all map objects to
this, not depending on their vertical position. The distortions of the photographs are completely different. Here
projection is central, the perspective distortion is characteristic, because of the optical realization (Fig. 53).

Fig. 53. Characteristic distortions in an aerial photo.

Though geo-reference can be assigned to pixels of photos with any orientation, and the geo-scientific value of
surface photos and landscapes is also significant, in this chapter we discuss the aerial photos, mostly taken from
aboard of aircrafts. These images approximate the map-like representation of the target, and their fit to standard
coordinate systems is of great value in the geoinformatic analyses.

9.1 The goal of the ortho-rectification

The goal of the ortho-rectification is to resample the pixels of an aerial photo to a coordinate system that is interpreted
in a selected horizontal surface (practically in a level surface of the region of the airphoto). This coordinate system
should be defined in the geographic information system, according to the above chapters (e.g. a map projection
plane).

Geo-referring the aerial photos, two different distortion effects should be corrected:
* The perspective distortion, which is the result of the geometry of the photograph taking.

¢ The distortion effect of the relief and/or the surface.
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Up to now, just because of the planar model characteristics of the maps, the vertical geo-reference was neglected
in the rectification, here this simplification is no more possible. And this is not even impossible; it is very important,
which terrain or elevation model is used. In the aerial photos, the soil, the real physical terrain surface is invisible
in many place, it is covered by the vegetation or the artificially built objects. It is our decision, based on the available
data and the terrain, how to take into account the elevation of the terrain itself, the different, vertically extent objects
and vegetation foliage.

There are some auxiliary information, needed to ortho-rectify the image:
* The camera model and the internal (or in other term: interior) orientation data,
¢ The external orientation data, and

A terrain or elevation model, covering the area of the photograph.

9.2 The camera model and the internal orienta-
tion

The camera model summarizes the optic geometry from the optic center of the photo geometry (from the center
of the object lens of the camera) to the image. Its parts are:

* The focal length, and

» The geometrical position of the fiducial points.

In case of the professional aerial photocameras, mainly of the older ones, the focal length is a constant at a certain
camera. In the image plane, some pre-fixed points, the so-called fiducial points are placed. These are positioned
near to the image corners and/or the halving points of the sides, their position is constant with respect to the image
center (the principal point of the image). Their positions are expressed in a local coordinate system in the plane of
the image, the origo is the principal point, the axes are parallel to the image sides. The positions are described in
millimeters or centimeters (Fig. 54).
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Fig. 54. Defining of the positions of the CCD corners as fiducial points in a camera model of a 1/2.5” CCD (cf-
Table 6) in a GIS software. The camera model also needs the focal length.

These meta-data are strictly needed for the exact geo-reference. For rectifying an archive aerial photo, the original
camera type, and thus its camera model parameters are obligatory subjects of our investigation. For the ortho-rec-
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tification, the GIS softwares ask for these camera models. The necessary data of some ’standard’, widespread used
cameras are often built-in. Also, we can define new camera models for our own instruments, knowing the necessary
data.

Beyond the camera model, a further element of the internal orientation is the image coordinates of the frame points
in our digital format image. In GIS software environment, it is practically given by moving the cursor to the frame
points, and record them (e.g. by mouse click) in correct order.

9.3 The external orientation

For the ortho-rectification, the part of the photo geometry between the optical center and the object is also need to
know. The most important elements of this are the three-dimensional position of the optical center and the camera
orientation. We have to know that the photo was taken from where and to which direction.

The location of the optical center is best to know in the wanted coordinate system of the later ortho-rectified image.
The elevation of this point is also has to be known and given, practically from the sea level (the geoid). If we want
to measure them during the flight, onboard an GPS instrument should be used, however its data can be applied
only with some corrections. The exact position of the camera, valid at the time of the photo taking, should be inter-
polated from the continuous position string of the GPS. Besides, it has to be taken into correction (and this correction
is never fully correct) that the GPS antenna and the optical center are not at the same place. Their position is fixed
only in the coordinate system fixed to the aircraft, but its heading, roll and pitch affect the difference vector element
in any external (ground-fixed) coordinate system.

The direction vector of the optical axis of the camera is also important to describe the image geometry, and their
onboard recording is also can be attempted. For this, an inertial navigation system (INS) can be used. This contains
gyroscopes (rotation sensors) and accelerometers (motion sensors) and records the actual angle difference in three
dimensions from a reference direction, which is pre-set prior to the flight. In this case, it is again an exercise to get
the orientation angle data exactly at the time of photo taking. The six elements of the external position are the three
locations and the three orientation data; they can be input directly into the GIS system used for ortho-rectification.

In the practice of the geo-reference, however, these data are seldom presented, even with preliminary accuracy.
Fortunately, the elements of the external orientation can be completed in indirect way. They can be estimated using
ground control points, moreover, this method often provides better accuracy than the built-in navigation system.
Most of the widely used GIS software packages offer the possibility of the estimation of the six external orientation
parameters instead of their direct input. To perform this estimation, the ground control points should be given in
the target coordinate system and the image positions of these points should be given also in the aerial photo. The
target coordinate system, however, should be a projected one, latitude-longitude based geographic systems should
be avoided here. The elevation of these point should be defined as precisely as possible; this affects the accuracy,
and sometimes the possibility of the parameter estimation. The elevations can be obtained from elevation models
or can be read from topographic maps. We have to be prepared to do a meticulous work with many clarifications,
difficult point identifications and switching the already recorded points on and off, during the process (Figs. 55 &
56).
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Fig. 55. GCPs in ortho-rectification: it is quite a work to find the best ones.

According to the recorded point data — three positional data and two image coordinates for each point — and the
already defined interior orientation the software estimates and gives the six parameters of the external orientation.
However, the parameter estimation is often burdened by significant error. Therefore, a dense control point system,
covering the whole image, should be created. The closer the optical axis to the vertical, the better is the quality of
the parameter estimation. If the image contains the horizon, it is almost impossible to estimate the elements of the
external orientation. However, the image should be used as a whole — no part of it can be cropped out — to save
the internal orientation data!
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Fig. 56. The elevations should be also given for the GCPs at the ortho-rectification.

9.4 Camera model of compact digital photo-
cameras

The above data are mostly used while using professional aerial photographing instruments. They work with focal
length and photo-negative size of several decimeters, with constant geometrical settings. However, we can ortho-
rectify the images taken from aircrafts by compact hobby cameras (Figs. 57 & 58). Of course, the focal length of
the camera can be altered by the zoom function and can be different from image to image. The actual focal length
is stored in the meta-data of the digital image (practically in the EXIF tag of the image; Fig. 59). The focal length
can be altered step by step, therefore we should define several camera model for a single camera, one model to

one focal length value.
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Fig. 57. Aerial photo taken by a compact digital camera (by the courtesy of Z. Barcza).
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T R

Fig. 58. Rectified version of the above photograph. The optical axis is far from the nadir direction, that’s why the
strange shape — however the fitting is good even in the far corner.

There are no fiducial in the hobby cameras, so they should be substituted by other positions. Practically, the corner
points of the images can be used as fiducial points. This solution can be quite inaccurate at traditional negatives
or dia-positives but provides surprisingly good results with digital cameras. The problem with the traditional film
is the not exact planar position of the film material in the camera, there are small undulation remained. Therefore
the frames are not exactly in the same position, with respect to the camera mechanics. A further error source is the
film development: usually not the original frame is processed, which means the lost of the internal orientation.
These problems do not occur at digital cameras. The film frame is represented by the CCD sensor. Its size is a
characteristic constant for the camera. Therefore, the position of the sensor corners can be defined as frame points.
The exact internal orientation can be obtained by defining the image coordinates of the four corners of the images

(Table 6).
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Sensor type | Width (mm) | Height (mm)
1/10” 1.28 0.96
1/8” 1.6 1.2
1/6” 2.4 1.8
1/4” 32 2.4
1/3.6” 4 3
1/3.2” 4.54 3.42
1/3” 4.8 3.6
1/2.7” 5.37 4.04
1/2.5” 5.76 4.29
1/2.37 6.17 4.55
12" 6.4 4.8
1/1.8” 7.18 5.32
1/1.77 7.6 5.7
1/1.6” 8.08 6.01
2/3” 8.8 6.6
1’ 12.8 9.6
1.5” 18.7 14

Table 6. Physical size of different CCD sensors of digital cameras, for defining the camera models.
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Fig. 59. The EXIF tag of the picture shown in Fig. 57. The make and the type of the camera makes the CCD-size
(Table 6) searchable. The focal length is also needed for the camera model.

9.5 The ortho-rectification process

When we have all of the above mentioned parameters of both the internal and the external orientations, we can
start the main part of the procedure. During this, the algorithm computes the real spatial position of all image pixels.
Then the image is resampled, using these positions, into a target coordinate system, which was pre-selected by the
user. To accomplish this step, we shall know also the elevation of the image points; that’s why a terrain or elevation
model is asked for by the algorithm. The accuracy of the elevations can be lower than it was needed for the control
point definition at the estimation of the external orientation elements — while the accuracy of one point there affects
the whole image, now it controls only its near vicinity.

The result should be always verified, e.g. by a topographic map (practically the one used for control point definition).
The horizontal fit is usually the best near to the corner that is the closest one to the vertical axis from the camera.
The fit could be unacceptably poor around the far corner, which is caused by the errors of the external element
estimation. We can do a feedback to making a new estimation or just retain the good fitting parts of the resulted
image (Fig. 60).
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Fig. 60. The edge of the rectified airphoto is an irregular line because of the relief-

9.6 The effect of the applied elevation model

In most cases, we have a terrain model for the surveyed region, which defines the terrain elevation with more or
less accuracy. However, as it was discussed, the aerial photographs often show not the soil/terrain itself, but the
top of the covering vegetation (field crops) or roofs of the buildings. If we omit this fact, e.g. because of missing
data of the building heights, the fit of the image will be good at the terrain level. The top of the buildings will be
shifted by several meters from the vertical axis from the camera (Fig. 61).

Fig. 61. If the elevation model does not contain the building heights, the fit is valid at the terrain level only.

In case of accurate models, showing also the height settings of the buildings, all points of the resulted images will
be in correct horizontal position. We will have data absences at the occultation pixels (e.g. the ones covered by
buildings, higher towers). This is not an error but a consequence of the survey geometry: indeed, we don’t have
any information about the covered terrain parts in the photo.

76

3

\\HM“%\H

http:// www.renderx.com/



render

Ortho-rectification of aerial photos

9.7 Making of digital anaglif images

There is an application, in which we don’t eliminate the distortion effect of the relief but, on the contrary, we use
it for our purposes. The so-called anaglif image can be constructed for a section area of the aerial photographs,
taken from different positions. The black-and-white versions of the two images are turned to different colors and
a unified color image is compiled from them. If this image is observed through eyeglasses with the same colors
used for the anaglif, it appears as a three-dimensional image in our brains (Fig. 62).

There is nothing more to do than processing both images. However, at the ortho-rectification step, we shall use
the same horizontal planes as an elevation model for both images. It should be repeated: at this step only; for the
estimation of the external element parameters, the vertical positions of the control points should be known. While
displaying the anaglif, it is important that the different colors in the print and the eyeglass should be in same order
(e.g. the red on the right, the green on the left both in the images and at the eyeglass). Otherwise, the image shown
three-dimensional character only after a rotation by 180 degrees.

Fig. 62. Anaglif image: throughout anaglif glasses, the terrain is viewable in 3D.

9.8 Rectification of the photographed docu-
ments and maps

The above discussed method can be used not only to fit photographs taken onboard of aircrafts into map coordinate
systems. When we take a picture about a document or a map sheet holding the camera in hand, the target is depicted
by the same perspectic distortion. If we aim to reconstruct the original geometry of the planar target, or to rectify
the photographed map in its own projection, we shall apply the method of this very chapter.

In case of text documents, it is — because of the difficulty of control point selection — not always easy. If needed,
we can make slightly, by pencil, some small signs at pre-measured points of the documents for control points.
After taking the photo, these signs should be removed without any damage of the original document. In case of
photographed maps, this problem does not occur. The control points should be selected the same way we discussed
in Chapter 6. The difference is that the rectification is to be done by the procedure discussed in this chapter. We
usually don’t have any information about the vertical position of the photographed material. Thus the elevation of
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the control points are set to zero, as well as the elevation model pixel values. Applying this method, we can recon-
struct the geometry of the photographed map and we can fit it to map coordinate system in the same algorithm.
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Appendix A. Appendix: procedures to
estimate the datum transformation
parameters

The abridging Molodensky formulae describe the datum transformation simply by the components of the position
vector pointing from the geometric center of the target datum ellipsoid to the one of the source datum ellipsoid. It
does not take the orientation and scale differences into account. It is also referred to as three-parameter datum
transformation. The neglected orientation and scale parameters are applied in the BurSa-Wolf method; besides the
three position shift parameters, uses three orientation and one scale parameters, too. Therefore it is also called as
seven-parameter datum transformation method. The parameters of both transformations (as well as the ones of
other procedures) are derived from coordinates of geodetic base points, whose coordinates are known in both the
source and the target datums.

In this Appendix we show the estimation methods of
* The abridging Molodensky parameters, providing the best horizontal fit, and

* The BurSa-Wolf parameters, providing the best spatial fit.

Estimation of the abridging Molodensky-para-
meters, providing the best horizontal fit

The procedure — verifying its name — provides direct connection between the geodetic coordinates and ellipsoidal
heights in the source and the target datums. To estimate the shift parameters, we need base points, whose ellipsoidal
coordinates are known on both datums. In the practice, usually the low-order geodetic base points are used as
common points, whose coordinates are given in well-defined projection systems. The inverse projection parameters
should be used to obtain the ellipsoidal coordinates.

The abridging Molodensky formulae are given in Equations (4.2.2), (4.2.3) and (4.2.4). Using the base point set
with the coordinates both in the source and the target system, the differences between the observed and the calculated
coordinates should be minimized, as follows:

N . . . 2 N R . i . 2

S (@0 - 0P + A" (@, Ay )]+ (cos @Y - (AD — AD + AL (@, A )’ = min
i=1

i=1

(10.1)

where the ’S’ lower index indicates the source coordinates and the *T’ indicates the target ones. These values can
be calculated using the Molodensky formulae as a function of the geodetic coordinates. To get the optimum in a

planar system instead of the geodetic system, the longitude difference is scaled by €os{®) The condition of the
minimum is that the partial derivative of the square sums of the differences in the first two equations, by the
parameters, should be all zeroes.

Doing the partial derivations and using the value C=a-df+f*da, the Equation (10.1) can be expressed in the following
matrix form:

Ax=b (10.2)

81

http://www.renderx.com/



render

Appendix: procedures to estimate the datum transformation paramet-
ers

where the elements of the (symmetric) matrix A and the vector b are:

b _Z“: —ADVsin®d" cos AV N Csin20sin®” cosA”  AA”sin A" (10.3)
= M sinl” (M(” sinl"y N® cos®sinl”

b Y| - AD? sin® sin AV . Csin2®? sin @ sin A . AAY cos AY

P4 M@ sinl” (M(” sinl")2 N cos®sinl”

b, = -

i ADD cos®?  Csin2d cos®?
M@ sinl" (M“) sinl")Z

i=

In the Equation (10.3) all the coordinates, the M and N values are interpreted in the source system. This is an in-
homogeneous linear equation system, whose solution is

x=Ab (10.4)

where A™! is the inverse of the matrix A. The solution vector x contains the dX, dY and dZ parameters. In the
practice, the parameters can be easily determined by the Cramer rule.

Estimation of the Bursa-Wolf parameters

Here the goal is to provide such parameters of the BW-transformation (Equation 4.3.1) that provide minimum
difference between the measured (given) coordinates of a point set and the calculated coordinates of the same set,
deriving from the coordinates in the other datum by the BW-method. It is formulated as follows:

(10.5)

In Equation (10.5) the ~ sign refers to the measured data, while the lower index indicates the source (1) and the
target (2) systems. The index i runs for the point set, the number of the point in this set is N, while the index j refers
to the dimension — in case of planar coordinates, it is 2 while at spatial coordinates, j=3.

If we substitute the following variables in the Helmert transformation:

(10.6)
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it appears as follows

(10.7)

These equations are linear ones to the parameters to be estimated. Again, the least squares method can be applied
for the estimation of the parameters. The minimum condition is:

(10.8)

The equation system (10.8) contains the measured coordinates of the identical points, X, Y, Z are their coordinates
in the source and the target systems. The minimum condition is set for the square-sums of the minimums between
the measured and the calculated coordinates. In other words, it is set for the squares of the metric distances. The
condition is similar to minimization of the absolute value of the distance difference.

The condition of the minimum is that the partial derivatives according to the parameters (the dX, dY, dZ, 4, B, C
and D values) should be zeroes. These partial derivatives are:

v 10.9
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In the Equation (10.9), the seven parameters can be moved before the summation in each row. After rearrangement,
this can be written as an inhomogeneous linear equation system, similar to the form of Equation (10.2). Making
the derivations,

(-1 0 o0 X Y Z, 0 |[dX] [ X

0 -1 0 Y, Xy 0 Z, |lay Y,

0 0 -1 z, 0 Yy, X, |laz z,

Xoy Yoy Zoy Xiy+Yo+Zg O 0 0 1A [F XX+ Y Yo +Z2 w2
Yoy Xy O 0 Xty +Ya YoZa XaZy || B X Yoy~ Y X
Zy 0 =Yy 0 YoZay Xiy+Ziy XY || C XaZn~ZgXq)
L 0 2y -Xp 0 XnZay XYy YorZo D] | YoZw ZpYa

occurs. The elements of the matrix A and the vector b — similarly to the solution of the abridging Molodensky
method — show the sums of the values of all base points of the set. We shall use this simplification to avoid an
equation image too complex and make it ready to print. Where the squares or the mixed products of the coordinates
occur among the matrix or vector elements, the summarization should be made for them. Together with the omission
of the sum sign, we also omit the index i.

The vector x, containing the estimated parameters, can be provided by the inverse of the matrix A, similarly to the
Equation (10.4). Afterwards, according to the Equation (10.6), the « scale factor and the a, B and y angle values
can be computed from the 4, B, C and D values. For this procedure, we have to have at least three base points with
their X, Y, Z coordinates both in the source and target datums.
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